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EXECUTIVE SUMMARY 

As we enter the next era of autonomous driving, robo-vehicles (which serve as low-cost and fully 
compliant drivers) are replacing conventional chauffeured services in the mobility market. During just 
the last few years, companies like Waymo Inc. and Cruise Inc. have already offered fully driverless 
robo-taxi services to the general public in cities like Phoenix and San Francisco. The rapid evolution of 
autonomous vehicles is anticipated to reshape the shared mobility market very soon. 

This project aimed to address the challenges faced by on-demand mobility operators in 
understanding and addressing spatiotemporal random bipartite matching problems (ST-RBMPs). At 
the planning level, we developed analytical models to estimate the expected system performance in 
a static RBMP. At the operational level, we designed solution algorithms to improve the overall 
service efficiency in ST-RBMPs with different types of supply arrivals. Although our main focus was on 
the application of on-demand mobility services, these models can also be applied to other contexts 
such as resource allocation, target detection, etc. This project aimed to address the following 
research objectives: 

1. Propose an analytical model with closed-form formulas (without statistical curve fitting) 
that estimate the expectation of the optimal matching distance for static RBMP, where the 
bipartite vertices are distributed randomly over a discrete network. These formulas can be 
incorporated into queuing and optimization models to identify the best operational 
strategies in on-demand mobility systems with closed- or open-loop resource arrivals. It 
helps determine the optimal decision timing for whether newly arriving customers should 
be matched instantly or pooled into a batch for matching. 

2. For ST-RBMPs with closed-loop resources, where arriving customers shall be matched 
instantly, the objective is to propose a Pareto-improving strategy that allows matched 
vertices to be swapped among candidates with improved matching distances as the 
system evolves. This strategy could enhance system efficiency by reducing the overall 
expected matching distance and mitigating the so-called Wild Goose Chasing (WGC) 
phenomenon. Approximate analytic formulas can be derived from a series of differential 
equations and spatial probability models to estimate the expected system performance in 
the steady state. 
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CHAPTER 1: INTRODUCTION 

ON-DEMAND MOBILITY SYSTEMS 

A Spectrum of Services 

The demand of a traveler is usually characterized by their origin and destination (OD) and desired 
time of travel. A spectrum of mobility systems has been designed to meet such demand, as illustrated 
in Figure 1. These systems range from highly flexible options with low occupancy to options with 
higher occupancy but lower flexibility. The most flexible options, such as auto-driving and taxis, are 
used for individual travel. They can take each traveler directly from the origin to destination with 
minimal delay. Built upon the taxi service, ride-sharing serves as an intermittent option between 
individual and collective travels. One traveler may need to share a ride with one or two others, which 
may result in a slight delay due to detours. More collective services typically require travelers to 
share rides with considerably more people, making them less flexible and often resulting in more 
delays. However, these services offer higher economies of scale. (Daganzo & Ouyang, 2019b). For 
example, conventional transit services offer the highest economies of scale. They are usually highly 
structured, with fixed routes and schedules, and require all travelers to follow certain predetermined 
service rules. As an option between ride-sharing and conventional transit, flexible transit offers a 
balance between the efficiency of having fixed routes and the convenience of allowing flexible 
deviations. It can be designed either as ride-sharing with higher occupancy or as conventional transit 
with flexible routes or schedules. These flexible options are designed to better meet the needs of 
travelers in real time and fall into the same category as “on-demand” (or “demand-responsive”) 
mobility systems. 

The advancement of information and communication technologies has revolutionized the on-demand 
mobility industry toward one that is more accessible, flexible, and efficient. Transportation network 
companies (TNCs), such as Uber, Lyft, and DiDi, have transformed many conventional systems into a 
variety of application-based shared mobility services, such as e-hailing taxis (Salanova et al., 2011), 
ride-pooling (Agatz et al., 2012), shared bikes (Ricci, 2015), e-scooters (Wang et al., 2022), customized 
buses (Shen et al., 2021a), and demand-responsive transit (Shen et al., 2021b). Compared to older 
systems such as “dial-a-ride” (Daganzo, 1978), these services achieve greater efficiency by capturing 
more data and employing more advanced computing methods to match the demand and supply in 
real time. In recent years, third-party “service integrators” have emerged in the mobility market. 
Their platforms serve as a marketplace that lists a pool of services and resources from multiple TNCs, 
such that a passenger can select the best service among participating companies. For example, Baidu 
Map in China has been integrating DiDi and several other e-hailing service operators (Zhou et al., 
2022b). By allowing matching between the larger pool of demand (from multiple customer groups) 
and resources (from multiple service operators), such integrated services hold the promise to further 
enhance the overall mobility service quality and achieve larger economies of scale/scope. 
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Figure 1. Graph. A spectrum of mobility services (Daganzo & Ouyang, 2019b). 

As we enter the next era of autonomous driving, robo-vehicles (which serve as low-cost and fully 
compliant drivers) are replacing conventional chauffeured services in the mobility market. During just 
the last few years, robo-taxis (Li et al., 2022) and robo-buses (Varisteas et al., 2021) have been 
adopted worldwide for road tests, pilot projects, and even open public services. For example, since 
2018, Baidu Inc. and WeRide Inc. have been implementing robo-taxi and robo-bus services in several 
Chinese mega-cities such as Beijing, Guangzhou, and Chongqing (Cheng, 2022; Harper, 2020). 
Meanwhile, in the U.S., companies like Waymo Inc. and Cruise Inc. have already offered fully 
driverless robo-taxi services to the general public in cities like Phoenix and San Francisco.  (Cusack, 
2021; Kolodny, 2022). Not only for passenger transportation, autonomous driving vehicles (e.g., 
delivery robots and drones) have also been widely used for on-demand freight transportation, such 
as in the small parcel delivery industry (e.g., for food and groceries). The rapid evolution of 
autonomous vehicles is anticipated to reshape the on-demand mobility market in the very near 
future. 

Very recently, at the nexus of sharing and autonomy, a new technology called modularized vehicle 
platforms or modular chassis, has been explored by many automotive start-up companies, such as 
PixMoving Inc. (Banks, 2020) and REE Inc.  (Gardner, 2021). Modular chassis is designed with built-in 
power and control systems to move independently and autonomously, and it can carry multiple types 
of customized cabins (e.g., for passenger or freight shipments). The customized cabins can be easily 
loaded onto (or unloaded from) a modular chassis, possibly at a convenient place with simple 
navigation guidance devices (e.g., roadside parking space), in a very short time (e.g., about 30–60 
seconds). These modular chassis and customized cabins, just like intermodal trucks and containers, 
will undoubtedly help smooth service operations and enable new mobility solutions for the 
transportation industry. For example, in cities facing both real-time passenger and freight shipment 
needs (e.g., ride hailing and on-demand package delivery), traditionally, two dedicated vehicle fleets 
from two companies (e.g., Uber and FedEx) must be deployed for these customers. With modular 
chassis, passenger and freight service providers can merge their modular chassis (owned, or possibly 
rented from a third party). The chassis will function like mobility service vehicles pooled by third-
party integrator platforms to serve multiple types of customers that are traditionally served 
separately. 
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System Design and Models 

Researchers and practitioners have been actively designing various service variations to improve the 
operational efficiency and customer experience of these mobile systems. The system design usually 
consists of two aspects: the design of service protocols (e.g., service area, fleet size) at the planning 
level and the design of real-time control strategies (e.g., dispatch algorithms) at the operational level. 

For the most flexible service types, such as robo-taxis or micromobility systems, the fundamental 
challenge is to find the best matches between travel demand and resource supply. While system 
design in this area primarily focuses on real-time operational-level problems, planning-level problems 
are also significant, as they could determine the upper-bound performance of any real-time 
decisions. This raises the need to better understand the system dynamics between demand and 
supply over time (e.g., a planning horizon) and space (e.g., a service region). The problem that best 
captures these underlying system dynamics is the random (or stochastic) bipartite matching problem. 
In a typical taxi operation, customers and vehicles evolve in the system as random points in a service 
region, and the service platform periodically (e.g., every a few seconds) makes vehicle dispatch and 
allocation decisions to best serve the customers. In each decision epoch, the system captures a 
snapshot of its current state to gather information on both idle vehicles (e.g., locations) and new 
customers (e.g., origin and destination locations and the elapsed waiting time). A bipartite graph can 
be constructed where one subset of vertices include all idle vehicles, and the other subset includes all 
new customer origins. Weights of the edges could be based on distance (or travel cost, time) and the 
customers’ priority. Matches are then optimized by the platform based on a predefined objective, 
such as minimizing the total matching distances for pickups (between the vehicles and the customers’ 
origins). Any unmatched customers either are assumed lost or could be retained and moved into the 
customer pool for the next decision epoch. This bipartite matching scheme stands out for its ease of 
computation and implementation. The next section provides an overview of bipartite matching 
problems. 

BIPARTITE MATCHING PROBLEMS 

The bipartite matching problem is a fundamental problem in the field of applied mathematics and 
combinatorial optimization (Asratian et al., 1998). In a bipartite graph, vertices are divided into two 
distinct subsets, and edges exist only between vertices of different subsets. The objective is to 
identify an optimal subset of these edges that match the vertices into disjoint pairs (i.e., no two 
selected edges share a common vertex). The most common static version of the bipartite matching 
problem has multiple types of variations. The most well-known one might be the maximum/minimum 
weight bipartite matching problem, where each edge carries a weight, and we seek the matching 
with the maximum/minimum total weight. If the two subsets of vertices have equal cardinality, we 
refer to this bipartite graph as balanced. 

A matching is considered perfect if it covers every vertex; otherwise, if the matching covers only one 
subset of vertices in an unbalanced bipartite graph, it is said to saturate that particular subset of 
vertices. Each static problem instance can be solved quickly using linear programming methods or 
algorithms. For example, many well-known combinatorial optimization algorithms, such as the 
Hungarian algorithm, (Kuhn, 1955), Jonker–Volgenant algorithm (Jonker and & Volgenant, 1987a), 
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and their variations, can generate near-optimal solutions in polynomial time. Even those more 
advanced machine-learning based algorithms, as reviewed in (Zhang et al., (2023), can effectively 
solve these problems within a relatively short time. These state-of-the-art computational techniques 
are sufficient to be implemented for real-time operational purposes. 

Another notable family of bipartite matching problems that has received significant attention is the 
online bipartite matching problem (Mehta, 2013). Unlike in a static bipartite graph, where both sets 
of vertices and the connecting edges are revealed beforehand, in a classic online bipartite matching 
problem, one set of vertices is known in advance while the other set arrives sequentially over time. 
As each vertex arrives, a decision must be made immediately on whether to match it with an 
available vertex from the other set or leave it unmatched. This version of the problem, in its various 
forms, is more challenging than the static one because of the lack of future information. The simplest 
strategy, like the greedy algorithm, matches each incoming vertex to any available vertex. Slightly 
more sophisticated strategies, such as the ranking algorithm, assign random ranks to vertices and 
match incoming vertices based on these ranks.  (Karp et al., 1990). Batching algorithms, (Feng and & 
Niazadeh, 2020; Ashlagi et al., 2023), which aggregate multiple incoming vertices before making 
matching decisions, are also being explored to improve efficiency and outcomes. This is still an 
evolving field, with many more algorithms being proposed to address new problem variations 
(Fahrbach et al., 2022; Shanks et al., 2023; Liang et al., 2023). 

In addition to focusing on solving a single problem instance, another significant aspect of studying 
these problems deals with scenarios where the vertex arrivals or the weights on edges between them 
are generated according to certain probabilistic distribution. Researchers study the probability or 
expectation of certain properties in these random graphs, such as the expected size of the matching, 
the probability of successful matches, and expected matching distance. For example, Mézard and 
Parisi (1988) and their subsequent studies investigated random bipartite matching problems and 
derived the expected optimal matching distance for many problem variations, as detailed in Chapter 
2. This type of analysis is valuable for understanding the behavior of systems in uncertain 
environments. Researchers typically employ techniques such as probabilistic or statistical models 
(Frieze and & Karoński, 2015) to identify the average properties of these random graphs. These 
models, especially analytical ones, are instrumental in designing and evaluating algorithms aimed at 
achieving certain objectives. 

These variations of the bipartite matching problem are very versatile, and they have been applied to 
a variety of theoretical or practical challenges. In the field of physics, they can be used to capture 
important properties of various disordered complex systems, such as identifying the patterns and 
energy configurations of atomic magnets in spin glass systems (Mézard & Parisi, 1985). In the field of 
biology, the problem can be used to describe interactions between species in an ecosystem (Simmons 
et al., 2019) or to analyze pairwise protein-protein interactions (Tanay et al., 2004). In the field of 
computer science, similar matching problems are formulated for graph-based pattern recognition 
systems to map the underlying data structures of images/signals to their features/labels (Yu et al., 
2020); or for emerging social media and e-commerce platforms to capture user/information 
interactions among distinct socioeconomic groups (Zhou et al., 2007; Wu et al., 2022). 
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SPATIOTEMPORAL MATCHING IN ON-DEMAND MOBILITY SYSTEMS 

On-demand mobility systems face a special variation of the bipartite matching problem, which we 
refer to as the spatiotemporal random bipartite matching problem (ST-RBMP). Compared to 
traditional bipartite matching problems, ST-RBMPs have three distinct features: (i) bipartite vertices 
(e.g., demand and supply) are spatially dispersed, potentially across different dimensions, with edge 
weights representing distances between vertices; (ii) both sets of vertices are dynamically revealed 
over time following specific random distributions; and (iii) some or all vertices in one set (e.g., supply) 
may be reusable and return to the system in the future, with the timing of return influenced by the 
current matching decisions. 

Specifically, on-demand mobility problems typically arise in one to three dimensions. In one-
dimensional space, it can be used to manage multiple elevators in a tall building where customers 
arrive randomly at various floors and need to be matched with an available elevator. In two- or three-
dimensional spaces, these problems can be used to describe how surface courier vehicles, idle taxis, 
freight drones, or passenger aerial vehicles are matched with customers within a city. The distance 
between any supply (e.g., vehicle) and demand (e.g., customer) points can be measured using various 
metrics such as Manhattan or Euclidean, depending on the specific structure of the underlying 
network. Regarding the arrival dynamics of supply-and-demand vertices, two types of systems can be 
considered: an open-loop system without vehicle conservation, where new idle vehicles could arrive 
from outside the system independently, possibly resembling services with freelance drivers, and a 
closed-loop system with a fixed fleet of vehicles, representing services with full-time drivers or robo-
taxis. In a closed-loop system, vehicles return to the fleet after completing a service, and the duration 
of their availability is determined by their pickup times—the shorter the pickup time, the sooner the 
vehicle can be redeployed within the system. 

Similar to other mobility systems, on-demand mobility operators primarily face two tasks: one at the 
operational level and the other at the planning level. At the operational level, they need to solve for 
the online ST-RBMP. Detailed matching solutions are often given in real time or in a rolling horizon via 
mathematical programming methods—for example, bipartite matching, (Xu et al., 2018), dynamic 
programs (Psaraftis et al., 2016), or meta-heuristics (Herbawi and & Weber, 2012; Najmi et al., 2017; 
Aydin et al., 2020). However, operators still face challenges in solving these problems. 

Regardless of the matching strategies, the inherent pitfalls associated with dynamic decision-making 
in a stochastic setting dictate that many e-hailing–based shared mobility systems still suffer from the 
so-called wild-goose-chase (WGC) phenomenon (Arnott, 1996; Castillo et al., 2017), which describes 
an inefficient system equilibrium with a large number of service vehicles trapped in unproductive 
deadheading (for customer pickups). In this situation, because few vehicles are ready to provide 
service, customers will experience long waiting times before pickup, and the system efficiency is 
compromised (Daganzo, 1978a, 2010; Daganzo and & Ouyang, 2019a). A range of strategies have 
been proposed to mitigate WGC for taxi systems—for example, via zone-based surge pricing (Castillo 
et al., 2017; Zha et al., 2018), path-based surge pricing and dispatching,  (Lei et al., 2019; Shen et al., 
2021b), imposition of maximum radius and maximum waiting time for vehicle-passenger matching 
(Xu et al., 2020; Valadkhani and & Ramezani, 2020), repositioning of idle vehicles (Ke et al., 2021; 
Wang and & Wang, 2020), and/or discriminative customer service (Afèche et al., 2018). However, 
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none of these strategies can fully resolve the WGC. More dynamic matching strategies are continually 
being proposed in this area. 

At the planning level, operators usually need to estimate the service efficiency under a large number 
of possible realizations of supply-and-demand scenarios (e.g., different vehicle and customer 
distributions), rather than finding exact vehicle–customer matches for one particular problem 
instance. The average matching distance between the vehicles and the customer origins, commonly 
referred to as the deadheading distance, stands as a key indicator of service efficiency. It indicates 
the “unproductive” efforts made by both customers (i.e., waiting for pickup) and vehicles (i.e., 
running empty) within the mobility system. Understanding the relationship between the average 
matching distance and vehicle–customer distribution can help improve service efficiency in many 
ways. Operators, for example, often need to set standards for operation, such as determining the 
time between consecutive decision epochs (i.e., pooling interval). A longer pooling interval may lead 
to more customers/vehicles appearing in one matching problem instance, potentially reducing the 
resulting matching distance. However, it also implies that customers need to wait longer to find a 
match. Finding a balance between these conflicting objectives and identifying the optimal operational 
standard require knowledge of this quantitative relationship. Moreover, operators often deploy new 
tactical-level strategies to further enhance their service efficiency, such as the ones proposed in 
Chapter 3. Analyzing the effectiveness of these strategies (often measured by the reduction in 
matching distance) under various vehicle/customer distributions also requires such knowledge. 

To the best of our knowledge, estimating the expected “optimal matching distance” for RBMP 
remains a challenging task. While each random realization of RBMP can be addressed as a 
deterministic bipartite matching problem, and one could use state-of-the-art techniques (as those 
employed by the TNCs) to solve a sufficiently large number of problem instances and produce 
statistical/simulated results, this process may pose computational challenges and consume 
considerable time. Moreover, the outcomes may lack the depth of analytical insights. In many cases, 
analytical models are favored for their efficiency, and they can provide more analytical insights 
compared to simulated results, such as those developed in (Daganzo et al., (2020) and (Ouyang et al., 
(2021) for estimating several key performance metrics (e.g., the expected vehicle distance traveled) 
for mobility services given certain operational standards. Moreover, this type of analytical model can 
be incorporated into the development of more comprehensive optimization/equilibrium models, 
helping operators or regulators in optimizing their service offerings to achieve higher service 
efficiency or social welfare (Zha et al., 2016; Ouyang et al., 2021; Liu and & Ouyang, 2021, 2023). 

RESEARCH OBJECTIVES 

This project aims to address the challenges faced by on-demand mobility operators in understanding 
and addressing the ST-RBMPs. At the planning level, we develop analytical models to estimate the 
expected system performance in a static RBMP. At the operational level, we design solution 
algorithms to improve the overall service efficiency in ST-RBMPs with different types of supply 
arrivals. Although our main focus is on the application of on-demand mobility services, these models 
can also be applied to other contexts such as resource allocation, target detection, etc. This project 
aims to address the following research objectives: 
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1. Propose an analytical model with closed-form formulas (without statistical curve fitting) 
that estimate the expectation of the optimal matching distance for static RBMP, where the 
bipartite vertices are randomly distributed over a discrete network. These formulas can be 
incorporated into queuing and optimization models to identify the best operational 
strategies in on-demand mobility systems with closed- or open-loop resource arrivals. It 
helps determine the optimal decision timing for whether newly arriving customers should 
be instantly matched or pooled into a batch for matching. 

2. For ST-RBMPs with closed-loop resources, where arriving customers shall be matched 
instantly, the objective is to propose a Pareto-improving strategy that allows matched 
vertices to be swapped among candidates with improved matching distances as the 
system evolves. This strategy could enhance system efficiency by reducing the overall 
expected matching distance and mitigating the WGC. Approximate analytic formulas can 
be derived from a series of differential equations and spatial probability models to 
estimate the expected system performance in the steady state. 

OUTLINE 

The remainder of this report is organized as follows. Chapter 2 presents the distance formulas for 
estimating the average optimal matching distance in a static RBMP in discrete networks. Chapter 3 
introduces a Pareto-improving swapping strategy designed for ST-RBMP with closed-loop resource 
arrivals and analyzes its performance in the steady state. 
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CHAPTER 2: AVERAGE DISTANCE OF RANDOM BIPARTITE 
MATCHING IN DISCRETE NETWORKS 

INTRODUCTION 

This chapter presents a closed-form distance formula estimation for random bipartite matching in 
discrete networks. In the field of transportation, bipartite matching problems are widely applicable 
(e.g., to find optimal matches between supply and demand points over continuous time and space). 
For example, in two-dimensional spaces, it can model how surface vehicles (e.g., taxis) are matched 
to customers, such as in ride-hailing or food delivery systems (Shen et al., 2024; Tafreshian and & 
Masoud, 2020). In three-dimensional spaces, it can dynamically dispatch and reposition aerial 
vehicles (drones) for delivering goods in the air (Aloqaily et al., 2022) or to optimize the flying 
trajectories of drone swarms during take-off and landing (Hernández et al., 2021). In addition, 
bipartite matches that span the time dimension can be useful for finding optimal schedules among a 
series of tasks (Ding et al., 2021; Afèche  et al., 2022), such as optimizing container transshipment 
among freight trains (Fedtke and & Boysen, 2017) or minimizing customer/vehicle waiting in 
reservation-based ride-sharing services (Shen and & Ouyang, 2023). 

Strictly speaking, bipartite matching applications in the transportation field are likely to be associated 
with a sparse discrete network, where supply and demand points are distributed along network 
edges (after ignoring the local access legs) (Abeywickrama et al., 2022). A special case would be on 
one-dimensional transportation routes or corridors. For instance, it can model the operations of 
drones that are used to deliver goods to customers located on different floors of a tall building (Ezaki 
et al., 2024; Seth et al., 2023), or vehicle–customer matching for a ride-hailing system on a single city 
corridor (Panigrahy et al., 2020). 

Any bipartite matching problem instance can be solved very efficiently using a range of well-known 
algorithms, including combinatorial optimization algorithms, such as Hungarian algorithm and Jonker–
Volgenant algorithm (Jonker and & Volgenant, 1987b), or newly developed machine-learning based 
algorithms (Georgiev and & Liò, 2020). However, in the context of service and resource planning, one is 
often interested in estimating the average matching cost across various problem realizations to 
evaluate the service efficiency under resource investments. For example, in designing mobility services, 
the average matching distance, or deadheading distance, is a key indicator that captures the 
unproductive cost spent by both service vehicles (i.e., running without passengers) and customers (i.e., 
waiting for pickup). Analytical formulas that reveal the relationship between the average matching 
distance and vehicle–customer distribution, such as those developed in Daganzo (1978b) and Yang et 
al. (2010), are often preferred by service operators, because these formulas can not only provide 
valuable managerial insights, but also be directly incorporated into mathematical models to optimize 
service offerings. Similar formulas have been used to design system-wide operational standards (e.g., 
demand pooling time interval) for customer–vehicle matching (Shen et al., 2024), evaluate the 
effectiveness of newly proposed customer matching strategies (Ouyang and & Yang, 2023a; Shen and & 
Ouyang, 2023; Stiglic et al., 2015), or analyze the impacts of pricing and market competition on social 
welfare (Wang et al., 2016; Zhou et al., 2022a). 
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The need to estimate the expected bipartite matching distance for planning decisions has led to the 
exploration of a stochastic version of the problem, known as the random bipartite matching problem 
(RBMP) in the literature. Earlier studies in the field of statistical physics were among the first to 
explore such a problem. Mézard and Parisi (1985) used a “replica method” to derive asymptotic 
formulas for the average optimal cost of a matching problem where the numbers of points in both 
subsets are nearly equal (i.e., balanced), and the edge weights identically and independently follow a 
uniform distribution. Building upon this work, Caracciolo et al. (2014) developed asymptotic 
approximations for the average Euclidean matching distance for balanced RBMPs in spaces with a 
dimension higher than two. However, these asymptotic approximations were derived under the 
strong assumption that the number of bipartite vertices approaches infinity and, hence, could only 
serve as bounds rather than exact estimates when the number of vertices is small. More importantly, 
their proposed formulas require curve fitting that estimates coefficients from simulated data. 
Daganzo and Smilowitz (2004) studied a related problem, which they called transportation linear 
programming (TLP), and they proposed approximated formula for estimating the average item 
distance among points with normally distributed demands and supplies. Through probabilistic and 
dimensional analysis, they introduced a bound to estimate the solution in two and higher dimensions. 
Very recently, Shen et al. (2024) proposed a set of closed-form formulas for arbitrary numbers of 
points in both subsets, an arbitrary number of spatial dimensions, and arbitrary Lebesgue distance 
metrics. Their model provides very accurate estimates, without curve fitting, in spaces with higher 
than two dimensions. However, their approach ignores the boundary of the space as well as the 
resulted correlation among the matched pairs, which is reasonable for higher dimension spaces but 
causes notable errors in one-dimensional space, especially when the two subsets are (nearly) of equal 
size. 

For one-dimensional problems, Caracciolo et al. (2017) proposed an asymptotic formula for 
estimating the square of the average matching distance. However, similar to other asymptotic 
approximations, their formula is applicable only in a limited number of scenarios (e.g., when the 
number of bipartite vertices is balanced and approaches infinity). Also, their formula also require 
curve fitting based on simulated data. Meanwhile, Daganzo and Smilowitz (2004) also proposed an 
exact formula for the average minimal item distance among points with normally distributed demand 
and supply in a one-dimensional space. Their results cannot be applied directly to RBMP, because 
they assume that (i) the supply and demand points are balanced and that (ii) the supply or demand 
value associated with each randomly distributed point follows a normal distribution, while in RBMP, 
these values are either positive one or negative one. Nevertheless, their analysis provides very strong 
insights. One of their key findings is that the total minimal item distance for all points is equal to the 
size of the area enclosed by the cumulative supply curve and the x-axis. This essential property also 
holds for our one-dimensional RBMP. 

To the best of our knowledge, no existing formula can provide accurate estimates for RBMPs (with 
arbitrary numbers of bipartite vertices) in a one-dimensional space or in a discrete network. This 
report aims to fill this gap by introducing a set of closed-form formulas (without curve fitting) that can 
provide sufficiently accurate estimates. This is done in two steps. First, we estimate the expected 
optimal matching distance for one-dimensional RBMPs. Our proposed method relates the matching 
distance in a balanced RBMP to the enclosed area size between the path of a random walk and the x-
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axis and derives a closed-form formula for the optimal matching distance for balanced RBMPs. For 
the more challenging unbalanced RBMPs, we develop a closed-form approximate formula by 
analyzing the properties of an unbalanced random walk and the optimal way to remove a subset of 
excessive points. Additionally, we propose a feasible point removal and swapping process to develop 
a set of recursive formulas that are more accurate. Next, we study the scaling property of the 
expected optimal matching distance in arbitrary-length lines. The insights are used as building blocks 
to derive formulas for RBMPs on a discrete regular network, when all points are generated from 
spatial Poisson processes along the edges. The expected optimal matching distance is derived as the 
expectation across two probabilistic matching scenarios that a point may encounter: (i) the point is 
locally matched with a point on the same edge or (ii) it is globally matched with a point on another 
edge. To verify the accuracy of the proposed formulas, we conducted a set of Monte-Carlo 
simulations for a variety of matching problem settings, for both one-dimensional and network 
problems. The results indicate that our proposed formulas have very high accuracy in all 
experimented problem settings. The proposed distance estimates, in simple closed forms, could be 
used directly in mathematical programs for strategic performance evaluation and optimization. 

The remainder of this chapter is organized as follows. First, models and formulas for one-dimensional 
RBMP (as a building block) are presented in both balanced and unbalanced settings. Second, formulas 
for arbitrary-length lines and then regular discrete networks are presented. Then, numerical 
experiments are presented to validate the proposed formulas. Finally, concluding remarks and 
suggestions are provided for the future research directions. 

1D RBMP DISTANCE ESTIMATORS 

Problem Definition 

We begin by defining the one-dimensional RBMP. Two sets of points, with given respective 
cardinalities n ∈ Z+ and m ∈ Z+, are independently and uniformly distributed on a unit length line 
within [0,1]. Without loss of generality, we assume n ≥ m. For each realization of the points’ locations, 
denote V and U as the two point sets, where |V | = n and |U| = m. A bipartite graph can be 
constructed, whose set of edges E connect every pair of points in the two sets; i.e., E = {(u,v) : ∀u ∈ U, 
v ∈ V }. The weight on edge (u,v) ∈ E is the absolute difference between the two points’ coordinates 
xu and xv, i.e., ∥xu −xv∥. Because n ≥ m, every point u ∈ U can be matched with exactly one point v ∈ V . 
We let yuv = 1 if u is matched to v, or 0 otherwise. The objective is to find a set of matches {yuv : ∀u ∈ 
U,v ∈ V } that minimize the total matching distance, as follows: 

 

Figure 2. Equation. Equation (2.1) and (2.2). 
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The average optimal matching distance across the realized points in U is a random variable that 
depends on the random realization of U and V. Its distribution is governed by parameters m and n, so 
we denote it Xm,n. We are looking for a closed-form formula for the expectation of the average 
optimal matching distance, E[Xm,n]. In order to do that, we first show that Xm,n can be estimated based 
on the enclosed area between the path of a related random walk and the x-axis, and then we take 
the expectation of this enclosed area. For a simple balanced problem (i.e., when n = m), we can 
directly derive a closed-form formula. For an unbalanced problem (when n > m), we first show 
optimality properties for the matching and then build upon that to derive both a closed-form and a 
recursive formula. 

Random Walk Approximation 

For each realized instance of one-dimensional RBMP, let I = U ∪ V . Sort all points in I by their x-
coordinates between 0 and 1, and index them sequentially by i. For point i ∈ I, denote xi ∈ [0,1] as its 
x-coordinate and zi as the value of its supply; i.e., zi = 1 if i ∈ V (indicating a supply point), or zi = −1 if i 
∈ U (indicating a demand point). A cumulative “net” supply curve can then be constructed for any 
coordinate x and any subset of points I′ ⊆ I; i.e., S(x;I′) = ∑ 𝑧𝑖{𝑖∈𝐼′,𝑥𝑖≤𝑥} . It is a piecewise step function. 

There are three special cases: S(x;I) represents the net supply curve constructed by the full set of 
points in I and S(0;I′) and S(1;I′) represent the net supply values at both ends of the curve, x = 0 and x 
= 1, respectively. 

Every curve S(x;I) can be related to the realized path of a specific type of one-dimensional random 
walk with m + n steps, starting from S(0;I) = 0. Among these m + n steps, exactly n steps each increase 
the net supply by 1 and m each decrease the net supply by 1; as such S(1;I) = n − m. The locations of 
the points in I correspond to the positions of these steps. Denote the distance (step size) from point 
(step) i ∈ I to its next point (step) as li,∀i ∈ I \ {|I|}. The step size varies because the points in I are 
uniformly distributed along the x-axis. 

Denote A(x;I′) = ∑{∀i∈I\{|I|},xi≤x} li ·|S(xi;I′)| as the total absolute area between curve S(x;I′) and the x-axis 
from 0 to x. For model simplicity, we assume the step sizes li,∀i ∈ I \ {|I|} are i.i.d., with mean l. Next 
we show how E[Xm,n] can be derived out of such an area, for both balanced and unbalanced 
matchings. 

Balanced Case (m = n) 

We begin with the special case where m = n. Now set I contains 2n points. Let Yn = A(1;I) be the 
random variable that equals the total absolute area between curve S(x;I) and the x-axis from 0 to 1. 
Daganzo and Smilowitz (2004) proved that A(1;I) must equal the minimum total shipping distance of a 
one-dimensional TLP with an equal number of supply and demand points, and, thus, it must also 
equal the minimum total matching distance of the corresponding one-dimensional RBMP instance. 
Thus, the expected optimal matching distance per point can be estimated by the following: 

 

Figure 3. Equation. Equation (2.3). 
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To further estimate E[Yn], we first consider a simpler type of related random walk with a fixed-step 
size of unit length. Let B(n) denote the expected area between the path of such a random walk and 
the x-axis. Harel (1993) has provided a formula for B(n), as follows: 

 

Figure 4. Equation. Equation (2.4). 

The last step of approximation, when n ≫ 1, comes from Stirling’s approximation. The basic intuition 
behind this formula is as follows. In a random walk with a fixed total number of steps (e.g., 2n), there 
are a finite number of possible combinations of upward (e.g., n + k) steps and downward steps (e.g., 
n−k), when k varies from 0 to 2n. Next, for each k value, the probability and expected area of a 
random walk can be determined: the probability is derived using backwards induction starting from 
some simple cases (e.g., k = 0); the expected area, conditional on k, is computed by the absolute 
difference between the numbers of upward and downward steps, multiplied by the step size. (For 
example, for a random walk with n + k upward steps and n − k downward steps, its expected area 
between the curve and the x-axis is simply 2k.) Then, Equation (2.4) can be obtained by taking the 
unconditional expectation of these area sizes across all possible values of k. 

Then, consider the type of random walk with varying step sizes. Under the i.i.d. assumption for li, we 
can multiply B(n) by the mean step size l to obtain an approximate estimation for E[Yn], as follows: 

 

Figure 5. Equation. Equation (2.5). 

Finally, according to Equations (2.3)–(2.5), and note 𝑙 =
1

2𝑛
 in this case, we obtain the following 

closed-form formula for E[Xn,n]: 

 

Figure 6. Equation. Equation (2.6). 

Unbalanced Case (n > m) 

Next, we consider the unbalanced case where n > m, for which n − m supply points from V will remain 
unmatched for each realization. Let V ′ ⊂ V denote the set of these n − m unmatched points. If we 
remove all points in V ′ from V, the problem will reduce to a balanced one with an equal number (i.e., 
m) of demand and supply points. As a result, the values on the net supply curve after point removal, 
S(x;I \ V ′), at x = 0 and x = 1 should both equal zero; i.e., 
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Figure 7. Equation. Equation (2.7). 

Figure 9 shows an example of how such a point removal process affects the net supply curve along 
the entire x-axis. In this figure, the points in V and U are represented by the red dots and blue 
triangles, respectively. The original and post-removal curves, S(x;I) and S(x;I \ V ′), are represented by 
the red dash-dot line and blue dashed line, respectively. The points in V ′ and the net supply values at 
their corresponding coordinates on the original curve, S(xv′;I),∀v′ ∈ V ′, are marked by the black cross 
markers. Note that every time a point v′ ∈ V ′ is removed, the net supply values within [xv′,1] will 
decrease by one. As a result, the cumulative reduction of net supply at position x should be 
determined by the total number of removed points within [0,x]. Sort the points in V ′ by their x-
coordinates, from left to right, as {𝑣1

′ , ⋯ , 𝑣𝑛−𝑚
′ }. If we further denote 𝑣0

′  and 𝑣𝑛−𝑚+1
′  as two virtual 

points at the boundaries (i.e. 𝑥𝑣0
′ = 0 and𝑥𝑣𝑛−𝑚+1

′ = 1), then the net supply values on the two curves 

within range [𝑥𝑣𝑘
′ , 𝑥𝑣𝑘+1

′ ) must satisfy the following relationship: 

 

Figure 8. Equation. Equation (2.8). 

This relationship is illustrated in Figure 9 by the black arrows. 

 

Figure 9. Graph. Point removal process in an unbalanced problem. 

Among all possible combinations of points in set V ′, we denote V ∗ as the optimal set of removed 
points that minimizes the area enclosed by the post-removal curve and the x-axis: 
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Figure 10. Equation. Equation of V*. 

The optimal post-removal area A(1;I \ V ∗), enclosed by the optimal post-removal curve S(1;I \ V ∗) and 
the x-axis, must equal the minimum total matching distance of the original unbalanced RBMP 
instance. Set random variable Zm,n = A(1;I \ V ∗), which depends on the random realization of I = U ∪ V 
(where |V | = n and |U| = m), and then, similar to how we handle the balanced case: 

 

Figure 11. Equation. Equation (2.9). 

In the following subsections, we will (i) show the optimal post-removal curve must include a series of 
balanced random walk segments; (ii) derive an approximate closed-form formula for E[Xm,n] by 
estimating the area of each balanced segment; (iii) provide an alternative estimation for E[Xm,n] with a 
recursive formula based on a feasible point selection process; and (iv) refine both estimations with a 
correction term. 

Property of the Optimal Removal 

We first show a necessary condition for the removed points to be optimal: the k-th removed point 
must have a net supply value of k on the original curve S(x;I). This is stated in the following 
proposition. 

Proposition 1. S(xvk∗;I) = k,∀k ∈ {1,...,n − m}. 

Proof. To show the proposition holds, it is sufficient to show the following claim is true: For any point 
vk

′ ∈ V ′, if S(xvk′ ;I) < k or S(xvk′ ;I) > k, we can always swap a point in V ′ with another point in V \ V ′ to 
reduce A(x;I \ V ′); hence, V ′ cannot be optimal. 

We begin with the case when S(xvk′ ;I) < k. According to Equation (2.8), vk
′ must have a negative net 

supply value on the post-removal curve; i.e., S(xvk′ ;I \ V ′) < 0. Figure 13(a) shows an example point vk
′ 

(indicated by the cross marker) in such a condition. A portion of the post-removal curve, including the 
removal of this single point, is represented by the red dash-dot line. Now we may check the points in I 
to the righthand side of vk

′ along the x-axis, until we encounter another supply point v ∈ V . Such a 
supply point v is guaranteed to be within (xvk′ ,1], otherwise S(1;I \ V ′) ≤ S(xvk′ ;I \ V ′) < 0, which violates 
Equation (2.7). 

Two cases may arise here for v. The first case is when v /∈ V ′, as shown in Figure 13(a). Because v is 
the first supply point to the right of vk

′ , the points within (xvk′ ,xv), if any, must all be demand points, as 
shown by the blue triangles in Figure 13(a). As all demand points have negative supply values, the net 
supply values on the post-removal curve within (xvk′ ,xv) must be no larger than S(xvk′ ;I \ V ′); i.e., for x ∈ 
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(xvk′ ,xv), S(x;I \ V ′) ≤ S(xvk′ ;I \ V ′) < 0. Now swap vk
′ out of V ′, and swap v in. Note here such a point 

swap would only affect the post-removal curve within [xvk′ ,xv), and after the swap, the original post-
removal curve, S(x;I \ V ′), will increase by one unit within [xvk′ ,xv), while all other parts remain the 
same. The area size under the curve is strictly reduced by the point swap, by an amount of A(𝑥; I \ V ), 
as shown by the gray area in Figure 13(a). The reduced area size is shown below: 

 

Figure 12. Equation. Equation of the reduced area size by a point removal. 

The last inequality holds because v must exist. Therefore, the claim is true for S(𝑥𝑣𝑘
′  ; I) < k (i.e., S(𝑥𝑣𝑘

′ ;I 

\ V ′) < 0) and v ∉ V ′. 

The other case occurs when v ∈ V ′. Because v is the first supply point encountered in V ′ to the right 
of 𝑣𝑘

′ , 𝑣 must be 𝑣𝑘+1
′ ,. Again, all points within (𝑥𝑣𝑘

′  , 𝑥𝑣), if any, must be demand points. In addition, 

because vk
′ 
+1 itself is a removed point, S(𝑥𝑣𝑘+1

′ ; I \V ′) ≤ S(𝑥𝑣𝑘
′   ; I \V ′) < 0. Then, we may simply change 

our focus from 𝑣𝑘
′  to 𝑣𝑘+1

′ , and then scanning the points on the right side of 𝑣𝑘+1
′ , and continue until 

we find a point v′ ∈ V ′ with S(𝑥𝑣𝑘
′ ; I \ V ′) < 0, and its next supply point v ∉ V ′. The proof for the 

previous case would apply for swapping v′ and v. Hence, the claim is also true for S(𝑥𝑣𝑘
′ ; I) < k and v ∈ 

V ′. 

When S(𝑥𝑣𝑘
′  ; I) > k, the proof is symmetric. We look for points to swap that can lead 𝑣𝑘

′
 to area 

reduction for A(𝑥; I \ V ) to the lefthand side along the x-axis, instead of the right. According to 

Equation (2.8),  now must have a positive net supply value on the post-removal curve; i.e., S(𝑥𝑣𝑘
′  ;I \ 

V ′) > 0. A supply point to the left must exist within [0, 𝑥𝑣𝑘
′ ), or otherwise S(0;I \ V ′) ≥ S(𝑥𝑣𝑘

′ ;I \ V ′) > 0, 

which violates Equation (2.7). There are two similar cases here depending on whether v is or is not in 
V ′. The logic of the proof is exactly symmetrical. The only difference is that, after swapping the two 
points, the original curve will “decrease” by one unit, instead of increase, within the interval. The area 
reduction is still strictly greater than zero, as shown in Figure 13(b). 

We have shown that the claim is true in all possible conditions. This indicates that if any removed 
point v′ in an arbitrary set V ′ does not satisfy 𝑆(𝑥𝑣𝑘

′   ; 𝐼) = 𝑘, then V ′ cannot be optimal. Therefore, for 

any removed point  in an optimal set V ∗, 𝑆(𝑥𝑣𝑘
∗   ; 𝐼) = 𝑘 must hold necessarily. This completes the 

proof. 
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(a) 𝑆(𝑥𝑣𝑘

′   ; 𝐼) < 𝑘 

 
(b) 𝑆(𝑥𝑣𝑘

′   ; 𝐼) > 𝑘 

Figure 13. Graph. Illustration of the point-swap process. 

Next, we present a useful property of the post-removal curve satisfying the optimality condition: 
S(𝑥𝑣𝑘

′ ; I) = k,∀k ∈ {1,...,n − m}. According to Equation (2.8), the net supply values on the post-removal 

curve at the locations of all removed points must be zero; i.e.: S(𝑥𝑣𝑘
′  ;I \ V ′) = S(𝑥𝑣𝑘

′ ; I) − k = 0. As such, 

the following proposition must hold. 

Proposition 2. For any given V ′, if S(𝑥𝑣𝑘
′  ; I) = k,∀k ∈ {0,1,...,n−m}, then each segment of the post-

removal curve, S(𝑥; 𝐼 ∖ 𝑉′) within (𝑥𝑣𝑘
′  , 𝑥𝑣𝑘+1

′ ), can be regarded as the realized path of a corresponding 

balanced random walk. 

Approximate Closed-Form Formula 

Propositions 1 and 2 show that the optimal post-removal curve S(𝑥;I \V ∗) contains n − m + 1 
segments with end points {𝑥𝑣𝑘

∗ }k=0,1,···, and each segment (𝑥𝑣𝑘
∗ , 𝑥𝑣𝑘+1

∗ ) can be regarded as a realized 

path of a balanced random walk. Accordingly, we can decompose the optimal post-removal area A(1;I 
\ V ∗) into n − m + 1 segments as follows: 
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Figure 14. Equation. Equation of post-removal area. 

where each term 𝐴(𝑥𝑣𝑘+1
∗ ; 𝐼 ∖ 𝑉∗) −𝐴(𝑥𝑣𝑘

∗ ; 𝐼 ∖ 𝑉∗) represents the area of a balanced random walk 

segment within range (𝑥𝑣𝑘
∗  , 𝑥𝑣𝑘+1

∗ ). 

For model convenience, we again ignore the impact of boundaries and assume that every point v ∈ V 
is probabilistically identical and independent to be selected in V ∗. Based on this assumption, we can 
directly apply Equation (2.5) to estimate the expected area of each balanced random walk segment, 
which shall be dependent on only the number of (balanced) points and the mean step size within 
each segment. Denoting mk as the number of demand (or supply points) in U in the k-th segment, 
E[Zm,n] can then be approximately estimated as the following sum: 

 

Figure 15. Equation. Equation (2.11). 

It is approximate because we simply treat the mean step size in each balanced random walk segment 

as the same as that of the original unbalanced random walk (i.e., 𝑙 =
1

𝑛+𝑚
). This could lead to an 

overestimation, and a correction term could be added. With our i.i.d. assumption for V ∗ and 
disregard of the boundary effects, we must have mk, ∀k ∈ {0,...,n − m} to be i.i.d. This may result in an 
underestimation, because points at specific positions may have a higher probability of being selected 
in V ∗ than others due to the presence of boundaries. 

Then, we may only focus on the expected area of the first segment (i.e., when k = 0). Let Pr{m0 = m′} 
denote the probability that the first segment contains exactly m′ ∈ {1,··· ,m} demand points, noticing 
that the total number of demand points across all n − m + 1 segments must equal m; i.e., ∑ 𝑚𝑘

𝑛−𝑚
𝑘=0 =

𝑚. To derive Pr{m0 = m′}, one may relate it to the well-known “stars and bars” combinatorial problem. 
When we use n−m “bars” (points in V ∗) to partition m stars (all matched pairs of demand and supply 
points), there are ( 𝑛

𝑛−𝑚
) possible combinations for such a partition. Once the first segment has been 

set to contain m′ stars, there remain n−m′ −1 positions for the remaining n−m−1 bars to be placed, 

resulting in (𝑛−𝑚′−1
𝑛−𝑚−1

) possible combinations. That is, 

 

Figure 16. Equation. Equation (2.12). 
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Hence, following Equations (2.6), (2.9), and (2.12), and note 𝑙 =
1

𝑛+𝑚
, in this case, we now have a 

closed-form formula for E[Xm,n], as follows: 

 

Figure 17. Equation. Equation (2.13). 

Again, this formula is approximate due to our simplifying assumptions. The next section will present 
an alternative method to yield a more accurate estimation via a specific point removal and swapping 
process. 

Recursive Formulas 

In theory, the optimal point removal for each realization shall be solved as a dynamic program (and 
possibly via the Bellman equation); however, such an approach is not suitable for closed-form 
formulas. Therefore, this section builds upon Propositions 1 and 2 to propose a simpler point removal 
and swapping process that can yield a near-optimum point-removal solution for each realization. 
Then the area size estimation across realizations, based on this process, can be derived into a set of 
recursive formulas. The result provides a tight upper bound for E[Xm,n]. 

First, we propose a point removal process that is developed based on the necessary optimality 
conditions in Proposition 1, such that it provides a reasonably good (e.g., locally optimal) balanced 

random walk. We initialize �̂� = ∅ and k = 1. Starting from x = 0, scan the supply points in V from left to 
right along the x-axis and check if a point satisfies the following conditions: (i) it has a net cumulative 
supply value of k; (ii) the nearest neighbor (in I) on the left, if existing, has a net supply value of k−1; 
and (iii) the net supply values of all points (in I) on the righthand side of this point is greater than or 
equal to k. If conditions (i)–(iii) are all satisfied by a point, denoted �̂�𝑘, then add it to the current set 

�̂�, increase k by 1, and repeat the above procedure until k = n − m. The net supply values of the 
points selected in this procedure are guaranteed to form an increasing sequence; i.e.: 

 

Figure 18. Equation. Net supply values in an increasing sequence. 

This is because, at step k of the above process, the curve S(𝑥; I) must have a net supply value of k − 1 
at the previously selected point �̂�𝑘−1 and a value of at least n − m at the final step at x = 1. Hence, 
from the intermediate value theorem, point �̂�𝑘  can always be found in (𝑥�̂�𝑘−1

,1]. Note that the 

removal of �̂�𝑘−1at step k only affects the curve on its righthand side, with the segments on its 
lefthand side being balanced random walks. From the construction of the process, all points on the 

final post-removal curve S(𝑥; I \ �̂�) surely have a non-negative net supply value; i.e., 
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Figure 19. Equation. Non-negative net supply condition. 

Figure 20 (a) shows a simple example of the point removal process, with n − m = 2. The original curve, 
S(𝑥; I), is represented by the red dash-dot line, and two selected removal points �̂�1 and �̂�2 are 
represented by the black cross markers. At step 1 and 2, the removal of �̂�1 and �̂�2 decrease the net 
supply values of points in the red and purple shaded regions, respectively. 

We again use the term “segment of the curve” but now refer to the post-removal curve S(𝑥; I  \ �̂�) 
within (𝑥�̂�𝑘

, 𝑥�̂�𝑘+1
) as the “k-th segment” (which must be balanced). From the perspective of each 

point �̂�𝑘 the post-removal area in (𝑥�̂�𝑘
,1] includes those within the kth segment and (𝑥�̂�𝑘+1

,1], both of 

which depend on the length of the k-th segment. Let Pr{�̂�𝑘  | a} denote the probability for the k-th 
segment to contain �̂�𝑘  demand (or supply) points, when there are exactly a demand points in 
(𝑥�̂�𝑘

,1]. In the step to select vk+1, there are n − m − k supply points to be removed; thus, there are a + 

n − m − k supply points in (𝑥�̂�𝑘
,1]. 

 
(a) 

 
(b) 

Figure 20. Graph. Illustration of the point removal and swap procedure. 
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That is, the original curve S(𝑥; I) starts from value k at �̂�𝑘 and returns to k after exactly 2�̂�𝑘  steps, 
which occurs with probability 

 

Figure 21. Equation. Probability of returning to same position. 

but never returns to value k afterwards, with probability from the well-known Ballot’s theorem 
(Addario-Berry and & Reed, 2008): 

 

Figure 22. Equation. Probability of never hitting zeros. 

As such, we have 

 

Figure 23. Equation. Equation (2.14). 

Let �̂�𝑘,𝑎 represent the area enclosed by the x-axis and the post-removal curve S(𝑥; I \ Vˆ) within 

(𝑥�̂�𝑘
,1], which contains exactly a demand points. From Equation (2.5), the expected areas size of the 

balanced random walk inside the k-th segment (𝑥�̂�𝑘
, 𝑥�̂�𝑘+1

) is simply: 

 

Figure 24. Equation. Expected area size of k-th segment. 

Hence, conditional on �̂�𝑘, we have 

 

Figure 25. Equation. Equation (2.15). 

and when k = n – m,  

 

Figure 26. Equation. Expected area of �̂�𝒏−𝒎,𝒂. 
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When k = 0, E[�̂�0,𝑎] represents the expected area of the entire post-removal curve. 

Next, we propose a refinement process based on local point swapping. It is intended to further 
reduce the post-removal area for a more accurate upper bound estimate. For all k ∈ {1,...,n − m − 1}, if 
there exists a point v ∈ V that satisfies (i) 𝑥�̂�𝑘

< 𝑥𝑣 < 𝑥�̂�𝑘
 and (ii) v is the nearest neighbor of �̂�𝑘 on the 

right, then we swap �̂�𝑘+1  out of set �̂� and swap point v in. We propose to perform exactly one such 
point swap to each segment. 

An example of point swap is illustrated in Figure 20(b). The post-removal curve S(𝑥; I \ �̂�) is 
represented by the blue dash curves. After a swap between points �̂�𝑘+1  and v, the k-th curve segment 
will be shifted down by one unit (while all other segments remain the same), as indicated by the black 

dotted curves. Such a point swap can result in both reductions (if net supply S(𝑥; I \ �̂�) > 0 before the 

swap, represented by the grey rectangles) and additions (if net supply S(𝑥; I \�̂�) = 0 before the swap, 
represented by the blue rectangles) to the enclosed area size. The following proposition says that the 
expected total area size will be reduced for each swap. This indicates that the proposed point-
swapping process will yield a smaller (or at least equal) expected post-removal area size. 

Suppose �̂�𝑘,0≤ �̂�𝑘  is the random number of points with zero net supplies within the k-th segment. 
According to the point-swapping process, the area size reduction can be computed as the difference 
between the number of positive net-supply points, 2�̂�𝑘  − �̂�𝑘,0, and that of the zero net-supply points 
�̂�𝑘,0, multiplied by the expected step size l. If we take the expectation of the area change with 
respect to �̂�𝑘,0, conditional on �̂�𝑘, we have 

 

Figure 27. Equation. Equation (2.16) 

Note that to compute E[�̂�𝑘,0| �̂�𝑘], it is equivalent to compute the expected number of times a 
random walk with 2�̂�𝑘  steps returns to zero. This expectation equals zero when �̂�𝑘  = 0. Meanwhile, 
Harel (1993) derived the probability that a random walk with 2�̂�𝑘  steps returns to zero at the 2j-th 
step, ∀j ∈ {1,..., �̂�𝑘}: 

 

Figure 28. Equation. Probability of a random walk returning to zero. 

Summing these probabilities across all possible values of j, we have 

 

Figure 29. Equation. Equation (2.17) 
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Now, adding Equation (2.16) as a correction term into Equation (2.15), and note 𝑙 =
1

𝑛+𝑚
, we have 

 

Figure 30. Equation. Equation (2.18) 

Together with Equations (2.14) and (2.17), all the above expected area sizes can be solved recursively. 

The expected matching distance E[Xm,n] is related to E[�̂�0,𝑚], as follows: 

 

Figure 31. Equation. Equation (2.19). 

Step Length Correction 

Finally, we propose a correction term to the formulas in Equations (2.13) and (2.19), for the 
unbalanced case, so as to address the fact that the expected step size of the balanced random walk 
segments, after point removals, is not the same as that of the original unbalanced random walk, 𝑙 =

1

𝑛+𝑚
. 

Under the current treatment, the expected step size of the balanced random walk segments, l, 
represents the minimum achievable expected matching distance between any two points. Consider 
the special case when n ≫ m. The estimated matching distance from both Equations (2.13) and (2.19) 
should converge to l. However, if this treatment is relaxed, because the step size li varies, the 
unmatched points are more likely to be farther away from the other points and have larger li values 
compared to matched ones. As a result, after removing the optimal unmatched points, the “true” 
expected step size of the balanced random walk segments, which contain only the successfully 
matched points, should be no larger than l. Therefore, this treatment may lead to an overestimation 
of the “true” optimal matching distance, and the resulting estimation gap is expected to be positively 
related to the number of unmatched points n − m. 

It is non-trivial to estimate this gap explicitly. Therefore, we introduce an approximate correction 
term derived based on the case when n ≫ m. Recall Shen et al. (2024) proposed a set of formulas for 
estimating the matching distance of RBMPs in any dimension. For the one-dimensional case, they 
provide both a general formula and an asymptotic approximation, as follows: 
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Figure 32. Equation. Equation (2.20). 

This formula is quite accurate when n ≫ m. Thus, when n ≫ m, the gap between the estimations 

given by Equations (2.13) or (2.19) and the one given by Equation (2.20) is simply 𝑙 −
1

2𝑛
=

𝑛−𝑚

2𝑛(𝑚+𝑛)
. 

Note that when m = n, this gap is zero, which aligns with our expectations. We will use this as an 
approximate correction term and subtract it from the estimates provided by both Equations (2.13) 
and (2.19) across all m and n values. The final formulas for estimating E[Xm,n] after applying the 
correction are as follows: 

 

Figure 33. Equation. Equation (2.21) and (2.22). 

where E[�̂�0,𝑚] is given by Equation (2.18). 

DISCRETE NETWORK RBMP ESTIMATORS 

All the results so far are derived in a unit-length line segment with given numbers of points. In order 
to address the expected optimal matching distance when points are distributed on a discrete 
network, we next show two extensions: (i) when the line segment has an arbitrary length and (ii) 
when the line segment is an edge of a discrete network, such that some of the matches must be 
made across edges. 

Arbitrary-Length Line 

First, we see how the expected matching distance scales when the line has an arbitrary length of L du. 
To connect with the previous sections, we introduce point densities (per unit length) µ and λ, where µ 

≤ λ, such that m = µL and n = λL. The average distance between any two adjacent points 𝑙 =
1

𝜆+𝜇
 du. 

The average optimal matching distance in this case, denoted as XE for an “edge,” should be governed 
by three parameters: µ, λ, and L. 

We will consider a few possible cases. For the balanced case (λ = µ), we can simply substitute n = λL 

and 𝑙 =
1

2𝜆
 into Equations (2.6), which gives an updated expected matching distance as: 
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Figure 34. Equation. Equation (2.23). 

We observed from this formula that the expected matching distance scales with L. For the highly 
unbalanced cases (λ ≫ µ), we can scale the asymptotic approximation in Equation (2.20) by 
multiplying L and substitute n = λL, which gives the following: 

 

Figure 35. Equation. Equation (2.24). 

In this case, the formula shows that the expected matching distance is independent of L. For other 

unbalanced cases (λ ⪆ µ), we may substitute 𝑛 = 𝜆𝐿, 𝑚 = 𝜇𝐿, 𝑙 =
1

𝜆+𝜇
, and the correction term 𝑙 −

1

2𝜆
 

into Equations (2.21)–(2.22), which leads to the following: 

 

Figure 36. Equation. Equation (2.25) and (2.26). 

These formulas do not directly tell how the expected matching distance scales with L. However, our 

numerical experiments show that when 
𝜆

𝜇
≈ 1, the distance formula behaves more similarly to the 

balanced case and increases monotonically with √𝐿. As 
𝜆

𝜇
 increases, the formula value quickly 

converges to a fixed value, regardless of L. 

The logic behind this somewhat counterintuitive property is that when one subset of vertices is 
dominating over the other, the vertices in the dominated subset are more likely to find matches 
locally (i.e., they only interact with the points nearby), so the expected matching distance does not 
increase with the length of the line. However, when the numbers of vertices in both subsets are 
similar, especially when they are equal, the optimal point matches tend to be found globally and they 
are less independent of one another (i.e., some points need to be matched with other points across 
the entire line). This is exactly the “correlation” issue that was discussed in Mézard and Parisi (1988). 
Further discussion on the scaling properties of the expected matching distance in higher-dimension 
continuous spaces can be found in Shen et al. (2024). 
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Poisson Points on Networks 

Next, we are ready for the matching problem in a discrete network. Let G = (V,E) be an undirected 
graph with node set V and edge set E. On each edge e ∈ E, the point subsets Ue and Ve are generated 
according to homogeneous Poisson processes, where me = |Ue| and ne = |Ve| are now random 
variables. We now conduct matching between the two sets of points on all edges: U = ⋃e∈E Ue and V = 
⋃e∈E Ve. The average optimal matching distance in this case, denoted as XG for a “graph,” should be 
influenced by the graph’s topology. In this report, we focus on a special type of graph with the 
following properties: (i) all nodes in V have the same degree, D, so the graph is D-regular; (ii) all edges 
in E have the same length L; and (iii) the Poisson densities, µ and λ, are respectively identical across 
all edges. Because all edges are translationally symmetric, we can start from one arbitrary edge and 
study how XG is determined by four key parameters: µ, λ, L, and D. 

We first categorize the matches occurring on an edge e into two types. We say an arbitrary point u ∈ 
Ue is “locally” matched if its corresponding match point v is on the same edge, with matching distance 

𝑋𝐺
l   ; otherwise, it is “globally” matched, with matching distance 𝑋𝐺

g  . Let α represent the probability 

for global matching, then from the law of total expectation, the expected distance E[XG] can be 
expressed as follows: 

 

Figure 37. Equation. Equation (2.27). 

We approximate the local matching distance E[𝑋𝐺
l ] from Equations (2.23)–(2.24) as if it were from an 

arbitrary-length line under parameters µ, λ, L, i.e., 

 

Figure 38. Equation. Equation (2.28). 

Next, to estimate α and E[𝑋𝐺
g  ], we propose a feasible process that is expected to generate a 

reasonably good matching solution for every realization. It prioritizes local matching and works as 
follows. For each edge e ∈ E, if ne ≥ me, we match all the me points in Ue with those in Ve as if they 
were in an isolated line segment. If ne < me, we select ne points from Ue that are closer to the middle 
of the edge and match them with all the points in Ve. The remaining me − ne unmatched points from 
Ue will seek global matches. We denote Ue

+ ⊆ Ue and Ve
+ ⊆ Ve as the remaining point sets on edge e 

after the above local matching process, respectively. For each edge e, exactly one of these two sets 
will be empty, and the other set will be concentrated near the ends of the edge. 

As such, we estimate α by the expected fraction of globally matched points in Ue. Global matching 
can happen to a point in Ue only when me > ne, so α can be estimated by the conditional expectation 
as follows: 
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Figure 39. Equation. Equation (2.29). 

We see that me − ne is the difference between two Poisson random variables, which follows a Skellam 
distribution and can be approximated by a normal distribution with mean (µ − λ)L and variance (λ + 
µ)L. As such, we have: 

 

Figure 40. Equation. Equation (2.30). 

where Φ(·) is the cumulative distribution function of standard normal distribution. Then, the 
conditional expectation is: 

 

Figure 41. Equation. Equation (2.31). 

where ϕ(·) is the probability density function of the standard normal distribution. Then, α is obtained 
by plugging Equations (2.30) and (2.31) into Equation (2.29). Similarly, by symmetry, 

 

Figure 42. Equation. Equation (2.32) and (2.33). 

Now, all that is left is to derive an estimate of E[𝑋𝐺
g  ]. In so doing, for all unmatched point u ∈ Ue

+, ∀e 
∈ E, we perform the following breadth-first search procedure throughout the network (as illustrated 
in Figure 43) to identify a feasible match globally. Step (i) is to find the nearer end of edge e from u, 
denoted as o0. Identify the layer of edges, Nk, whose nearer end is kL distance away from o0, for all k = 
0,1,···. Step (ii), starting from k = 0, is to check whether there exists any edge e′ ∈ Nk such that 𝑉𝑒′

+ ≠ ∅. 
If yes, match u with the nearest point 𝑣 ∈ ⋃ 𝑉𝑒′

+
𝑒′∈𝑁𝑘

 (e.g., shown as the labeled red circle in Figure 
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43), mark the edge containing v as e∗ and the nearer end of e∗ (to o0) as ok. Repeat (i) and (ii) until all 
points in Ue

+,∀e ∈ E have found a match, or all points in Ve
+,∀e ∈ E have been used for a match. 

According to the above matching process, the distance between a specific u ∈ Ue
+ and its match 𝑣 ∈ 𝑉𝑒′

+ 
consists of three parts (as indicated by the three gray curves in Figure 43): (i) the distance from u to o0 

on edge e; (ii) the distance from o0 to ok, where e∗ ∈ Nk; and (iii) the distance from ok to v on edge e∗. 

 

Figure 43. Graph. Illustration of the breadth-first search procedure. 

Let random variables d1, d2, and d3 represent these three distances, and E[𝑋𝐺
g  ] can be written as the 

sum of their individual expectations; i.e., 

 

Figure 44. Equation. Equation (2.34). 

First, we look at d2. The probability of finding a match in the k-th layer should be no larger than the 
probability for at least one edge e′ ∈ Nk to have ne′ > me′. Because all edges are translationally 
symmetric, Pr{ne′ > me′} = Pr{ne > me}. Also, because each node has an equal degree D, we have |Nk| ≤ 
(D − 1)k+1,∀k. Hence, approximately,1 the probability of finding a match in the k-th layer is: 

 

Figure 45. Equation. Equation (2.35). 

We would have d2 = kL (for k = 0,1,2,···) if a match is successfully found in the k-th layer, but not in the 
previous layers (if any); hence, for k = 0,1,2,···: 

 
1 The exactly cardinality of the layers, |Nk|,∀k, can be easily counted for any D-regular network. However, |Nk| ≈ (D −1)k+1 is a good 
approximation when k is relatively small, and the probability quickly approaches zero as k increases. Hence, we use the approximation for 
simplicity. 
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Figure 46. Equation. Equation (2.36). 

As k increases, the first term in Equation (2.36) quickly approaches zero, while the second term 
approaches a constant. Thus, E[d2] can be approximated by the following truncation: 

 

Figure 47. Equation. Equation (2.37). 

where κ is a relative small value (e.g., about 10). 

Next, we look at d1 and d3. Recall that all unmatched points in 𝑈𝑒
+ , if any, after local matching, will be 

located near the two ends of edge e. The expected number of unmatched points near each end is 
E[|𝑈𝑒

+|]

2
=

1

2
E[𝑚𝑒 − 𝑛𝑒|𝑚𝑒 > 𝑛𝑒]. The average distance between two adjacent points among them is 

1

𝜇
. 

Then, the distance between an arbitrary point u ∈ Ue
+ and its nearer end o0, i.e., d1, is approximately 

uniformly distributed in the interval (0,
1

2𝜇
E[𝑚𝑒 − 𝑛𝑒|𝑚𝑒 > 𝑛𝑒]), and hence the average, E[d1], is 

approximately equal to half of the interval length, i.e., 

 

Figure 48. Equation. Equation (2.38). 

where E[me−ne | me > ne] is given by Equation (2.31). The derivation of E[d3] is similar, but through 
symmetrical analysis of the unmatched points in 𝑉𝑒∗

+ where e∗ ∈ Nk. The distance between ok and an 

arbitrary unmatched point in 𝑉𝑒∗
+ near ok is approximately uniformly distributed in the interval 

(0,
1

2𝜇
E[𝑛𝑒

∗ − 𝑚𝑒
∗|𝑛𝑒

∗ > 𝑚𝑒
∗ ]), and again, E[ne∗ − me∗ | ne∗ > me∗] = E[ne−me | ne > me]. However, 

competition may occur, and not all points in 𝑉𝑒∗
+ must be matched. From the perspective of a specific 

point u ∈ Ue
+, during the breadth-first search process, it will be matched with the nearest available 

point 𝑣 ∈ ⋃ 𝑉𝑒′
+

𝑒′∈ 𝑁𝑘
. However, other competing points in ⋃e∈E Ue

+ (as indicated by the other blue 

triangles in Figure 43) may also have the chance to be matched with the points in ⋃ 𝑉𝑒′
+

𝑒′∈ 𝑁𝑘
 (shown 

as the red circles in Figure 43). The expected ratio between the total number of competing points of u 

and the total number of available points in ⋃ 𝑉𝑒′
+

𝑒′∈ 𝑁𝑘
 is approximately 

|𝑈|

|𝑉|
=

𝜇

𝜆
. This indicates that at 

the end of the breadth-first search process, 
𝜇

𝜆
 of the points in ⋃ 𝑉𝑒′

+
𝑒′∈ 𝑁𝑘

 will be matched. 
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Because e∗ ∈ Nk, the distance between ok and an arbitrary matched point 𝑣 ∈ 𝑉𝑒∗
+   near ok, i.e., d3, is 

approximately uniformly distributed in the interval (0,
𝜇

2𝜆2 E[𝑛𝑒 − 𝑚𝑒|𝑛𝑒 > 𝑚𝑒]), and hence the 

average, E[d3], can be approximately estimated as follows: 

 

Figure 49. Equation. Equation (2.39). 

where E[ne − me | ne > me] is given by Equation (2.33). 

Summarizing all the above, E[XG] can be estimated out of Equations (2.27)–(2.39). 

NUMERICAL EXPERIMENT 

Verification of 1D RBNP 

In this section, we validate the accuracy of the proposed formulas of 1D RBMP using a series of 
Monte-Carlo simulations. For each combination of n and m values, 100 RBMP realizations are 
randomly generated. For each realized instance, the optimal matching is solved by a standard linear 
program solver GLPK (Makhorin, 2011). The average optimal matching distances for each (m,n) 
combination is recorded as the sample mean across the 100 realizations. 

Figure 50 compares the simulation results with the formulas developed for both balanced and 
unbalanced cases, including Equations (2.6), (2.21) (2.22), and (2.20). The optimal matching distances 
solved for each instance from the Monte-Carlo simulation is represented by the light-blue dots, and 
their sample mean is represented by the red solid curve with square markers. The estimations from 
Equations (2.6), (2.21), (2.22), and (2.20) are marked by the blue dash-dot curves, blue dash-dot 
curves with cross markers, green dash-dot curves with plus markers, and grey dash curves, 
respectively. 

We first try the balanced cases. Let the value of n = m vary from 1 to 200. Figure 49(a) shows the 
results. The estimations by Equation (2.6) closely match with the simulation averages, with an 
average relative error of 4.57%. Meanwhile, Equation (2.20) has a larger average relative error of 
43.2%. This indicates that Equation (2.6) performs significantly better than Equation (2.20). In 
addition, when n and m are considerably small, Equation (2.6) tends to overestimate the simulation 
average. However, this error diminishes rapidly as n increases. For instance, the relative error is 
57.8% when n = 1, but drops significantly to 9.2% when n = 6. This deviation is likely due to the 
assumption of i.i.d. step sizes, as the correlation among the step sizes li generally decreases with 
increasing n. When n is sufficiently large (e.g., n > m + 100), Equation (2.6) can provide a very 
accurate estimation. 
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(a) Balanced 

 

(b) Unbalanced, m = 50 

 

(c) Unbalanced, m = 100 
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(d) Unbalanced, m = 200 

Figure 50. Graph. Accuracy of discrete estimators. 

Next, we try the unbalanced cases. We set m ∈ {50,100,200}, and let n range from m + 1 to a 
sufficiently large number 2m + 100. Figures 50 (b)–(d) show the results. The estimations from 
Equation (2.22) closely match with the simulation averages across all n and m values. The average 
relative errors are 7.0%, 6.4%, and 5.8% for m = 50,100,200, respectively. This indicates that, in 
general, Equation (2.22) can provide very accurate distance predictions. We then look at the 
estimations from Equations (2.21) and (2.20). When n ≫ m, both equations also match quite well 
with the simulation averages. Specifically, for n ≥ 2m, the average relative errors for Equation (2.21) 
are 5.4%, 5.6%, and 6.2%, for m = 50,100,200, respectively. In the meantime, Equation (2.20) yields 
average relative errors of 12.1%, 15.2%, and 17.7% for the same m values, respectively. When n ≈ m, 
larger discrepancies can be observed between the equations and the simulation averages. While 
Equation (2.21) still outperforms Equation (2.20), the discrepancy is notable. Recall that this 
discrepancy may arise from the i.i.d assumption for point selections in V ∗. Observations from various 
V ∗ instances show that, when n ≈ m, points at certain specific positions (e.g., the first or the last point 
when n = m + 1) are more likely to be selected in V ∗ than the others. Nevertheless, Equation (2.21) 
performs generally better than Equation (2.20) and provides very good estimates when n ≥ 2m. 

In summary, one can choose the most suitable formula given the specific problem setup and the 
required accuracy. For balanced cases, Equation (2.6) should be used. For unbalanced cases, when n 
≫ m, Equation (2.21) is recommended as it can already provide a good estimation and is 
computationally more efficient than Equation (2.22); otherwise, Equation (2.22) is more suitable as it 
provides the most accurate estimates. 

Verification of Discrete Network RBMP 

In this section, we validate the accuracy of the proposed formulas of arbitrary-length line RBMP and 
discrete network RBMP using a series of Monte-Carlo simulations. For the former, we first fix µ but 
vary L and λ. For the latter, we fix L and µ, but vary D and λ. For any parameter combination, 100 
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RBMP instances are randomly generated, each solved through Equation (2.1)–(2.2) by a standard 
linear program solver, and the optimal matching distances are averaged across the 100 realizations. 

Figure 51 compares the simulated average distances of arbitrary-length line RBMP, represented by 
markers, with estimations from Equations (2.23) (for λ/µ = 1) and (2.26) (for λ/µ ∈ {1.1,1.5,3}), 
represented by lines. The line length L varies from {1,3,5,7,9} [du], and µ = 10 [1/du]. In general, the 
estimations by Equations (2.23) and (2.26) fit tightly to the simulation averages across all L and λ/µ 
ratios. The average relative errors by estimations are 5.07%, 6.21%, 2.97%, and 8.84% for λ/µ = 
1,1.1,1.5,3, respectively. Also, the optimal matching distance increases concavely with L when λ/µ = 
1. Yet, as the ratio λ/µ becomes slightly larger, both the simulated averages and the formula 
estimations become flatter. At higher values of λ/µ, such as 1.5 or 3, there is no significant change in 
the optimal matching distance with L. These observations support the earlier discussion and visually 

illustrate how the average optimal matching distance scales with √𝐿 in the balanced RBMP, but is 
largely independent of L in the unbalanced RBMP with λ ≫ µ. 

Next, we build a series of D-regular discrete networks with node degree D ∈ {3,4,6}. Each network has 
36 total number of unit-length edges (i.e., L = 1 [du]), and µ = 5 [1/du]. We further vary λ from 5 to 25 
[1/du]. Figures 52 (a)-(c) compare the simulation averages (black solid curve) with estimations by 
Equation (2.26) and (2.27) (dashed and dotted curves). Each Monte-Carlo simulation instance, 
represented by a light-blue dot, is also plotted. The estimations by Equation (2.27) fit tightly to the 
simulation average across all parameter combinations. The average relative errors are 8.53%, 4.73%, 
and 3.40% for D = 3,4,6, respectively. This indicates that, in general, Equation (2.27) can provide very 
accurate predictions in a wide range of D, L, λ/µ combinations. In the meantime, we observe that 
Equation (2.26) also estimates the average distance accurately when λ ≫ µ. Specifically, when λ ≥ 2µ, 
the average relative errors of Equation (2.26) are 9.31%, 6.72%, and 5.96% for D = 3,4,6, respectively. 
Recall that, as λ ≫ µ, there are more chances for a point in U to be matched locally, which indicates 
that α converges to 0 and Equation (2.26) will predict the distance almost as well as Equation (2.27). 

 

Figure 51. Graph. Verification of arbitrary-length 1D RBMP. 
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(a) L = 1, µ = 5, D = 3 

 

(b) L = 1, µ = 5, D = 4 

 

(c) L = 1, µ = 5, D = 6 

Figure 52. Graph. Verification of discrete network RBMP. 
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CONCLUSION 

This report presents a set of closed-form formulas, without curve fitting or statistical parameter 
estimation, that can provide accurate estimates for random bipartite matching problems in one-
dimensional spaces and discrete networks. These formulas can be used directly in mathematical 
programs to evaluate and plan resources for many transportation services. In one-dimensional space, 
we relate the matching distance to the area between a random walk path and the x-axis, and then 
derive a closed-form formula for balanced matching. For unbalanced matching, we first develop a 
closed-form but approximate formula by analyzing the properties of unbalanced random walks 
following the optimal removal of a subset of unmatched points. Then, we introduce a set of recursive 
formulas that yields tight upper bounds based on the analysis of unbalanced random walks. The 
scaling property of the matching distance in arbitrary-length line segments is also discussed. Building 
upon these results, we derive the expected optimal matching distance in a regular graph, in which 
points are distributed on equal-length edges based on spatial Poisson processes, by quantifying the 
expected distance when the point is locally matched (i.e., matched within the same edge) or globally 
matched (i.e., matched across different edges). Results indicate that our proposed formulas all 
provide quite accurate distance estimations for one-dimensional line segments and discrete networks 
under different conditions. 

Nevertheless, our proposed models build upon several assumptions and approximations, which may 
be relaxed in the future. For example, we assumed each random walk step size as an i.i.d random 
variable with mean l, and treat the mean step size in each balanced random walk segment as the 
same as that of the original unbalanced random walk. This approach directly leads to an 
overestimation of the matching distance, particularly when n ≫ m. Although we propose an 
approximate correction term to address this issue, alternative (better) models could be explored in 
the future. Further analysis could also be conducted to understand how such correlations among 
matched pairs would affect the optimal point removals for unbalanced problems. In addition, while 
the distance estimator upper bound is quite accurate, it requires solving a recursive formula, which is 
computationally more cumbersome. Exploring alternative methods could provide simpler estimates 
of similar accuracy. For discrete networks, this report opens the door to many interesting new 
questions. For example, future research should develop methods to estimate the expected matching 
distance in networks with varying edge lengths, varying degrees, and heterogeneous point densities. 
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CHAPTER 3: PARETO-IMPROVING SWAPPING STRATEGY FOR 
SPATIOTEMPORAL RANDOM BIPARTITE MATCHING WITH 
CLOSED-LOOP RESOURCES 

INTRODUCTION 

This chapter presents a newly proposed dynamic matching strategy for ST-RBMP and analyzes its 
performance in a closed-loop system where instant matching may already be the best operational 
strategy. It is inspired by a recently proposed strategy in (Ouyang and Yang, (2023b) to counteract the 
WGC phenomenon in e-hailing taxi systems. This strategy allows a vehicle currently assigned to pick 
up an existing customer to possibly surrender its duty to a newly idle vehicle closer to that customer, 
so as to reduce deadheading time. System performance was predicted analytically and corroborated 
with simulations to show significant enhancement to service efficiency against WGC. The only 
potential shortcoming, however, is that the originally deadheading vehicle would lose its customer 
and, hence, may consider this swap unfavorable, especially if the involved vehicles are chauffeured. 
More generally, the issue could be more severe if the two involved vehicles belong to different 
service operators (but are pooled via service integrators or modular chassis). Masoud et al. (2017) 
proposed a related strategy, referred to as ride exchange, to improve matching rate and customer 
retention, in which unmatched customers are allowed to purchase existing itineraries from other 
customers (who will be compensated via pricing mechanisms for using alternative itineraries). 
Simulation experiments (Masoud et al., 2017; Masoud and & Jayakrishnan, 2017) showed that this 
ride exchange strategy can lead to a higher matching rate than a standard first-come, first-served 
strategy. Yet, some open questions remain at the planning level—for example, how system 
performance varies with fleet sizes, with or without ride exchange, and how these relationships can 
be used to guide service design. 

The new Pareto-improving dynamic swap strategy aims to create a win-win situation, in terms of 
reducing waiting/deadheading times, for all involved participants. We analytically derive a system of 
implicit nonlinear equations in the closed form, including a set of differential equations, to analyze 
the mobility system with the proposed swap strategy and to estimate the expected system 
performance in the steady state. Such analytical models are particularly useful, compared to 
simulation models, not only in revealing the intrinsic relationships between input and output 
quantities, but also for further analysis by the service providers or government agencies (e.g., as 
constraints in mathematical programs [in Ouyang et al., 2021]) to optimize resource planning and/or 
service offerings (e.g., eligibility for swapping and/or service integration) that can achieve a desired 
level of service. This system of equations is solved numerically to yield key metrics needed to quantify 
the system performance at equilibrium, as functions of the customer demand level and the fleet size. 
A series of agent-based simulation experiments are conducted to verify the accuracy of the proposed 
analytical formulas and to demonstrate the effectiveness of the proposed swap strategy. The results 
show that the proposed mathematical model can predict accurately the performance of mobility 
systems under the proposed swap strategy in a variety of application scenarios (e.g., integrated or 
modular services). 
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The remainder of this chapter is organized as follows. First, the basic idea of the proposed Pareto-
improving vehicle swap strategy is introduced. Then, a set of analytic formulas are derived, which can 
predict the performance of the proposed swap strategy. Then, numerical experiments are presented, 
in which a set of key metrics from simulation measurements are compared with theoretical 
predictions. It also discusses the effectiveness of swap strategy in multiple application settings. 
Finally, concluding remarks and possible directions are provided for future research. 

STRATEGY 

Most conventional mobility systems (e.g., taxis) only use an idle vehicle to serve a new customer. The 
proposed Pareto-improving vehicle swap strategy allows a vehicle originally enroute to pick up an 
existing customer to serve newly arriving customers, and if this happens, compensates that existing 
customer with an available idle vehicle. Whenever a new customer (e.g., customer B in Figure 53[a]) 
arrives into the system, the platform will find customer B’s nearest idle vehicle, b1, as a candidate for 
pickup. At the same time, the platform will scan through the currently waiting customer (say, 
customer A) one by one to locate its currently assigned vehicle (vehicle a1) as well as its nearest idle 
vehicle (vehicle a2). If (i) customer B is closer to vehicle a1 than customer A, (ii) vehicle a2 is closer to 
customer A than vehicle a1, and (iii) vehicle a1 is closer to customer B than vehicle b1, then it is 
beneficial to let vehicle a1 go pick up customer B, while at the same time use vehicle a2 to take over 
customer A. 

 

(a) The proposed swap strategy (upon customer B’s arrival) 

 

(b) Simpler strategy (upon vehicle a2 becoming idle) 

Figure 53. Graph. Illustration of two dynamic vehicle swap strategies. 
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In practical implementations, the vehicle swap suggestion can be sent to vehicles with an expiration 
time limit. This time limit could be only a few seconds, similar to what conventional e-hailing taxis 
have to react to a new customer assignment. Once both vehicles accept the suggestion, the swaps 
will be conducted, and the two involved customers will simply receive a notice with updated vehicle 
information. If the system is operated with fully compliant drivers (e.g., full-time company employees 
or autonomous vehicles), such a swap can be performed instantly without any delay. Otherwise, even 
if one or both of the vehicles fail to respond positively within the time limit, the system can simply 
resend the swap suggestion later (e.g., after 1–2 min), or seek other feasible swaps that may arise in 
the future. 

The proposed swap strategy is “Pareto improving,” as all five involved participants will experience 
Pareto improvements: (i) both customers A and B expect shorter waiting times because nearer 
vehicles are now used to pick them up; (ii) vehicle a1 now picks up a nearer passenger, shortening its 
unproductive deadheading time; and (iii) idle vehicles a2 and b1 would not hold negative feelings 
because they are never aware of the swap. Such a win-win outcome is superior to the simpler swap 
strategy proposed in Ouyang and Yang (2023), which, as illustrated by Figure 53(b), seeks 
opportunities to use a newly idle vehicle a2 to substitute for other deadheading vehicles a1 as long as 
the swap shortens the waiting time of vehicles a1’s current customer A—even though vehicle a1 will 
lose customer A and may consider this swap unfavorable. These two strategies differ in terms of not 
only the swap time (i.e., when a customer newly arrives vs. when a vehicle newly becomes idle), but 
also the need to satisfy a win-win condition for all five, instead of three, involved parties. 

Note that the proposed strategy, per the above description, instantly assigns a vehicle to a newly 
arrived customer, but this choice is for modeling convenience only. The idea of vehicle swaps can be 
applied regardless of how the customer-vehicle matching decisions are made, as long as potentially 
improving matches are sought dynamically. Other matching strategies may pool passengers and 
vehicles from within a spatial distance for a short period of time (e.g., a few seconds) so as to perform 
a many-to-many bipartite matching (Xu et al., 2018; Valadkhani and & Ramezani, 2020). We choose 
to assign a vehicle instantly, and allow dynamic swaps later, mainly for three reasons. First, instant 
vehicle assignment is simple, reasonably good, and easy to implement for many application scenarios. 
Second, it helps decouple the system toward analytically closed-form formulas that not only provide 
insights, but also serve as a convenient way to quantify system performance. Third, the disadvantage 
of instant vehicle assignment is exactly remedied by the proposed dynamic vehicle swaps. As a more 
suitable vehicle becomes available (later), we always have the opportunity to swap the originally 
assigned vehicle. From the perspective of a customer, the quality of service could be arguably similar 
(or even better), because the customer can get a vehicle assigned instantly instead of being held 
waiting before an assignment is made. 

It is not trivial to analytically quantify the effectiveness of such a strategy on mitigating WGC and 
enhancing system performance in a stochastic operating environment. For a swap to be feasible, a set 
of conditions in the form of distance inequalities need to be satisfied simultaneously, and these 
conditions may be correlated to each other. Therefore, one of the tasks is to derive the probability for 
one possible swap to be feasible (i.e., Pareto-improving for all five involved parties). Furthermore, 
each new customer, upon arrival, may see multiple feasible candidates for a swap, and likewise each 
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waiting customer may also see multiple feasible opportunities for a swap when its assigned vehicle is 
deadheading. Careful considerations must be made, hence, regarding such competitions among 
multiple feasible swap candidates. Finally, each swap may reduce a random amount of 
waiting/deadheading time for either involved customer/vehicle, so we must develop a method to 
estimate the new system equilibrium under the proposed strategy, so that the expected system 
performance (e.g., the expected waiting/deadheading time) can be estimated for arbitrary 
demand/supply settings. All these efforts will be described in the next section. 

MATHEMATICAL MODEL 

Queuing Network Model for Taxi Service 

We consider a square service region with area size R km2, where the streets form an infinitely dense 
grid. The generation of customer trips follow a homogeneous Poisson process in both time and space, 
with rate Λ trips/km2-hour, and as such, each generated trip’s origin and destination are uniformly 
distributed across the service region. The region employs a total number of m identical vehicles 
operating with an average speed of v km/hour to serve the customers. If proper units are chosen for 
distance and time, the value of area size and vehicle speed can both be 1, and the equivalent unitless 
demand λ = ΛR3/2/v represents the expected number of trips generated during the time in which a 
vehicle travels across the region. 

Following the aspatial queuing network model in Daganzo (2010), we know all vehicles in the system 
transition among three states: idle, assigned, and in-service. Upon each customer’s arrival, the 
system instantaneously assigns the nearest idle vehicle to the customer. Then, the assigned vehicle 
will start a deadheading trip from its current location to the customer’s origin, while at the same 
time, the customer waits for pickup. After reaching the customer’s origin, the vehicle becomes in-
service and starts to move toward the customer’s destination. When the in-service vehicle drops off 
the customer, it immediately becomes idle and ready for new customers. 

In the steady state, the number of vehicles in each of the states are denoted as ni, na, and ns, 
respectively. We also denote Y as the total deadheading distance needed to pick up a customer and L 
the in-service distance to deliver a customer. Their respective expectations E[Y] and E[L] must satisfy 
the following, per Little’s formula: 

 

Figure 54. Equation. Equation (3.1). 

Under the Manhattan distance metric, it is well-known that E[L] = α and E[𝑌] =
𝜅

√𝑛𝑖+1
, respectively, 

where 𝛼 =
2

3
 and 𝜅 = √

𝜋

8
 (Daganzo, 1978). By substituting these results into Equation (3.1) and 

noting the fleet size m = ni + ns + na, we have: 
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Figure 55. Equation. Equation (3.2). 

It is easy to analyze the solution to Equation (3.2) in the form of equilibrium vehicle distribution, 

(ni,na,ns), where 𝑛𝑎 =
𝜅𝜆

√𝑛𝑖+1
, 𝑛𝑠 = 𝛼𝜆. At a minimum fleet size 𝑚min = 𝛼𝜆 + 3 (

𝜅𝜆

2
)

2

3
− 1, the 

equation has a single solution that satisfies 2(ni + 1) = na. When the fleet size is too small, m < mmin, 
the equation has no solution (i.e., the system has no equilibrium and cannot sustain the described 
service). When the fleet size is sufficiently large, m > λ(α + κ), the equation has only one root (i.e., the 
system has only one equilibrium as well). For any fleet size in between, Equation (3.2) has two real-
valued roots that correspond to two equilibria: one with ni > (m−αλ−2)/3 ≫ 1 and the system 
operates efficiently with a large number of idle vehicles; the other with a small ni < (m − αλ − 2)/3 and 
the system suffers from the WGC phenomenon. This type of queuing network model assumes that ni 
is notably larger than 1 so as to absorb the impacts of stochasticity as well those of the region 
boundary on the expected deadheading distances. 

To mitigate the WGC phenomenon, the proposed dynamic swap strategy aims to push the system 
toward the efficient equilibrium by rescuing vehicles trapped out of long deadheading trips and 
reducing the expected deadheading/pickup time per customer (i.e., E[Y]). To derive this expectation, 
we take each customer as a basic analysis unit and see what could possibly happen from arrival to 
pick up. In so doing, the following sections first quantifies the probability for a new customer and an 
arbitrary waiting customer to feasibly swap vehicles. If the new customer sees at least one feasible 
swap upon arrival, then an “initial” swap will occur to this new customer. If this new customer sees 
multiple feasible swaps upon arrival, then the competition among these feasible swaps must be 
addressed because only one swap per new customer can be conducted successfully. Once the new 
customer is assigned a vehicle (with or without an initial swap), they become a waiting customer. 
While waiting for pickup, their assigned vehicle may be considered by (multiple) other newly arriving 
customers as a candidate for a feasible swap, and some of them may be successful. Next, it is 
discussed that how these successful swaps (including the initial swap or those during waiting) could 
reduce the total waiting time experienced by this customer, and at the same time reduce the total 
deadheading time spent by all involved vehicles. Finally, a solution method for the derived system of 
analytic equations is proposed. 

Probability of a Feasible Swap 

As the first step, we study how a swap would be geometrically feasible to all those involved. As 
shown in Figure 56(a), the system checks the relative locations of the five participants to determine 
the feasibility of a swap whenever a new customer arrives. A swap is feasible when the following 
three conditions are all satisfied: (a) from customer B’s perspective, the pickup distance after the 
swap, Ŷ = |Ba1|, is less than or equal to the pickup distance before the swap, Y = |Bb1|; (b) from 
vehicle a1’s perspective, the deadheading distance after the swap, Ŷ, should be no larger than the 
remaining deadheading distance before the swap, X = |Aa1|; (c) from customer A’s perspective, the 
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pickup distance after the swap, X̂ = |Aa2|, is less than or equal to its remaining pickup distance X. As 
such, any swap satisfying all these conditions, hence deemed feasible, will improve the service 
experience for all involved participants and create a win-win situation. 

 

(a) Geometry of the participants in a feasible swap 

 

(b) Competition between candidates A and C 

Figure 56. Graph. Illustration of a swap and a competition. 

Now we follow the perspective of customer A. Assume customer B has just arrived, and customer A’s 
remaining pickup distance is x. Conditional on X = x, the probability for a swap between customers A 
and B to be feasible, denoted p(x) = Pr{Ŷ ≤ Y, Ŷ ≤ X, X̂ ≤ X|X = x}, can be derived. To control the 
number of swaps, system operators could introduce additional conditions into the definition of a 
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feasible swap. For example, a set of minimal distance saving thresholds δA, δB, and δa can be imposed 
for customers A and B and vehicle a1, respectively, by using the following feasibility conditions: X̂ ≤ X 
− δA, Ŷ ≤ Y − δB, and Ŷ ≤ X − δa. Here, we ignore the influence of region boundary and assume the 
location of customer B is uniformly distributed in the region. The appendix gives detailed derivations 
that lead to the following approximate formula: 

 

Figure 57. Equation. Equation (3.3). 

Note that Equation (3.3) is a nondecreasing function of x. It converges to 0 as x → 0+, and it has an 

upper bound of 
1

𝑛𝑖+1
 when 2x2 approaches 1 (i.e., when x approaches the longest pickup distance in 

the unit square). 

Competition for a Successful Swap 

The previous section derives, from the perspective of a waiting customer A, the conditional 
probability for a newly arrived customer to form a feasible swap with a waiting customer x distance 
away from its assigned vehicle. However, not every feasible swap will actually be executed, because 
the new customer B may see multiple feasible swap opportunities at the same time (upon its arrival). 
Figure 56(b), for example, shows two waiting customers (i.e., A and C) that both satisfy the feasibility 
conditions, so they are competitors for only one successful swap. Here, we assume that one of these 
feasible candidates is randomly selected for a swap. The “random” selection assumption is made for 
two main reasons: (i) model simplicity, as it avoids deriving the extreme value distribution of a set of 
random variables (e.g., distance savings from all candidates) in an analytical form; and (ii) 
implementation convenience, as it allows the first found feasible swap candidate (possibly via 
random sampling) to be implemented—other options that seek an “optimal” swap would require all 
potential candidates to be evaluated, which could be time-consuming. We use ω to denote the 
conditional probability of a feasible swap to be successfully conducted, given the new customer sees 
at least one feasible swap candidate. The appendix shows that, following the analysis of bipartite 
matching with Poisson arrivals (Ouyang and & Yang, 2023b), ω can be analytically written as follows: 

 

Figure 58. Equation. Equation (3.4). 

where µ denotes the expected total number of feasible swap candidates a waiting customer (e.g., 

customer A) may encounter during its entire wait for pickup, Ei(𝜇) = ∫
𝑒𝑡

𝑡
𝑑𝑡

𝜇

−∞
  is the exponential 

integral function, and γ = 0.5772 is the Euler-Mascheroni constant. The appendix also explains why 
the expected number of feasible swaps seen by a new customer is also µ, and hence if we further 
assume a Poisson distribution, the probability for a new customer to experience an initial swap upon 
arrival (i.e., seeing at least one feasible swap) is 1 − e−µ. 
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Interestingly, because the expected total number of initial swaps experienced by all new customers 
must be equal to the expected total number of successful swaps experienced by all waiting 
customers, and each customer is counted as both a new customer and a waiting customer, we know 
that the expected number of successful swaps per waiting customer must also equal 1 − e−µ < 1. See 
the appendix for a more detailed explanation. This property should be considered an advantage 
because the customers and/or drivers (in a chauffeured system) may not favor too many swaps that 
could possibly make them anxious or confused. 

To further derive µ, we let µ(x) be the expected total number of feasible swap candidates a waiting 
customer shall encounter in the remaining wait duration while its current assigned vehicle is x 
distance away. From customer A’s perspective, in an infinitesimal time increment dt: a new customer 
B shows up with probability λdt, independent from other geometric conditions; customer A is a 
feasible swap candidate with probability p(x); and, under that condition, customer A will be chosen 
by customer B for a successful swap with probability ω. Hence, there could be three possible 
scenarios. First, with probability λdtp(x)ω, a feasible swap shows up and is actually conducted 
successfully for customer A in the dt time; the remaining pickup distance for customer A jumps 
immediately from 𝑥 to x,̂ and the value of 𝜇(𝑥) equals 1 + 𝜇(�̂�) = 1 + E[𝜇(�̂�)|�̂� ≤ 𝑥] = 1 +
1

𝑥2 ∫ 𝜇(�̂�)2�̂�𝑑�̂�
𝑥

0
. The second equality comes from the uniform distribution of the location of a2 within 

the diamond area centered at A (see Figure 56[a]). Second, with probability 1−λdtp(x), no feasible 
swap candidate shows up during dt time, and vehicle a1 will continue to move along its deadheading 
trip; the expected number of remaining feasible swaps equals µ(x−dt). Finally, with probability 
λdtp(x)(1−ω), a feasible swap shows up in dt time but it is not successful due to competition; the 
expected number of remaining feasible swaps should equal 1 + µ(𝑥 – dt). Putting all these together, 
function µ(𝑥) must satisfy the following equation: 

 

Figure 59. Equation. Equation (3.5). 

The above can be further simplified into the following differential equation with boundary conditions 
µ(0) = 0 and 𝜇′(0) = 0: 

 

Figure 60. Equation. Equation (3.6). 

From Equations (3.6), function µ(x) can be solved. Then, if we know a customer’s initial pickup 
distance, denoted Z, with a probability density function of fZ(z), we can easily obtain the 
unconditional expectation µ as follows: 
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Figure 61. Equation. Equation (3.7). 

Waiting/Deadheading Time 

Now we show how to derive the expected waiting time experienced by a waiting customer, denoted 
τ. Because there is always a one-to-one correspondence between a waiting customer (e.g., customer 
A in Figure 56[a]) and an assigned vehicle (e.g., vehicle a1) at any time, this expectation is equal to the 
expected total deadheading time of all vehicles ever assigned to this customer (i.e., E[Y]). Similarly to 
the derivation of µ, we first define 𝜏(𝑥) as the expected remaining waiting time of the waiting 
customer whose current assigned vehicle is x distance away. The value of τ(x) becomes 𝜏(�̂�) =
1

𝑥2 ∫ 𝜏(�̂�)2�̂�
𝑥

0
𝑑�̂� if a swap is conducted successfully in dt time (with a probability of λdtp(x)ω), or 

τ(x−dt) otherwise. As such, 𝜏(𝑥) satisfies the following equation: 

 

Figure 62. Equation. Equation (3.8). 

which can be further simplified into a differential equation with boundary conditions τ(0) = 0 and τ′(0) 
= 1, as follows: 

 

Figure 63. Equation. Equation (3.9). 

From Equations (3.9), function τ(x) can be solved. Again, if we know the probability density function 
of a customer’s initial pickup distance fZ(z), the expected waiting/deadheading time τ is given by: 

 

Figure 64. Equation. Equation (3.10). 

Initial Pickup Distance 

Now note that we need the probability distribution of initial pickup distance z to derive both µ and τ. 
We next derive the cumulative density function of Z, denoted FZ(z). 
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Recall that for any newly arrived customer (e.g., customer B in Figure 56[a]), there are two scenarios 
for the initial pickup distance: if there is a successful initial swap, the distance should be Ŷ, or 
otherwise the distance shall be Y. The approximate probability distributions of Y and Ŷ in a closed 
form are discussed in the appendix. However, to derive FZ(z), we need to obtain the probabilities for Y 
and Ŷ to be greater than a certain value z, conditional on whether an initial swap is conducted. To 
capture the probability of an initial swap, we must also obtain (i) the probability density function for a 
randomly chosen assigned vehicle to have a remaining deadhead distance of x at a random time, 
denoted fX(x); and (ii) the conditional probability for a customer, while waiting, to ever see its 
assigned vehicle being x distance away, denoted P(x). The appendix provides the detailed derivation 
of fX(x), P(x), and FZ(z), and the results are summarized as follows: 

 

Figure 65. Equation. Equation (3.11) and (3.12). 

and 

 

Figure 66. Equation. Equation (3.13). 

Note that the system of Equations (3.3)–(3.7) and (3.11)–(3.13) must be solved together to yield FZ(z), 
and then the probability distribution function fZ(z) = dFZ(z)/dz. 

Solving System Equilibrium and Performance Metrics 

Now, we can update the queuing model. By replacing the original expected deadheading time El(l) 
with τ, Equation (3.2) becomes: 

 

Figure 67. Equation. Equation (3.14). 

As such, the value of ni (as well as those of na = τλ and ns = αλ) can be solved numerically through the 
system of nonlinear equations (3.3)–(3.14). A possible iterative algorithm is described as follows. 
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• Step 1: Initialize ni by solving Equation (3.2); set ω = 1, fZ(z) = 4niz(1 − 2z2)ni−1 and P(x) = 1. 

• Step 2: In every iteration, do the following sub-steps until the value of ω converges: 

o Solve µ(x) from Equation (3.6), then compute the new value of µ from Equation (3.7). 

o Find P(x) that satisfies Equation (3.12), update fX(x) from Equation (3.13), and update fZ(z) 
from Equation (3.11). 

o Update the value of ω from Equation (3.4). 

• Step 3: Based on current values of ni and ω, solve τ(x) from Equation (3.9), then compute the 
value of τ from Equation (3.10). Update the value of ni from Equation (3.14) and compute na = 
λτ and ns = m − na − ni. 

• Step 4: Repeat steps 2–3 until the value of ni converges. 

Depending on the value of m, this algorithm may yield zero, one, or two solutions for the vehicle 
distributions at equilibrium (ni,na,ns). For each equilibrium, Equations (3.3)–(3.13) also yield a number 
of system performance metrics—for example, the expected number of feasible swaps encountered 
per waiting customer µ, the expected number of successful swaps per waiting customer (or 
equivalently, the probability for a new customer to have an initial swap) 1 − e−µ, the expected 

waiting/deadheading time τ, as well as the expected initial pickup distance E[𝑍] = ∫ 𝑧𝑑𝐹𝑍(𝑧)
√1/2

0
. 

NUMERICAL RESULTS 

Model Verification 

To demonstrate the accuracy of the proposed model and algorithm, an agent-based simulation 
program is used to simulate a mobility service system for one type of customer (e.g., taxi). The trips 
are generated in a unit square from a homogeneous Poisson process with rate λ, and they are served 
by a fleet of size m. The program generates and tracks the customers’ and vehicles’ entire travel 
experience, including arrivals, assignments, pickups and drop-offs. To take a closer look at the effects 
of vehicle swaps, upon each new customer’s arrival, the program will record the current number of 
idle vehicles (i.e., ni) existing in the system, because varying values of ni implies drastically different 
experiences for the customers. If there is no idle vehicle in the system when a new customer arrives, 
this customer will be considered lost; an effective customer arrival/service rate that belong to each 

equilibrium point, �̂�, is recorded across all simulation trials as �̂� =
1

𝛼
(𝑚 − 𝑛𝑖 − 𝑛𝑎), respectively. 

Following the data processing method by Ouyang and Yang, we also measure out of each simulation 
run: (i) a tuple of vehicle distributions (ni,na) that represent each possible equilibrium point of the 
system and (ii) the subset of customers upon whose arrival the ni value falls within the region of 
attraction of each equilibrium point (if multiple exist). Then, the key quantities associated with 
system performance metrics will also be recorded for each customer throughout its entire travel—
e.g., the total number of feasible swaps seen by it upon arrival (as a new customer), the total 
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numbers of feasible and successful swaps it encounters (as a waiting customer), its initial pickup 
distance, and its total waiting time. Then, we take averages of these metrics across each subset of 
customers, and the results are, respectively, sample estimations of µ, 1−e−µ, E[Z] and τ for the 
corresponding equilibrium. 

A series of numerical experiments with varying demand levels are conducted so that simulation 
measurements are compared with theoretical predictions. For a small town like Urbana-Champaign, 
assuming that the unitless customer arrival rate λ is approximately 200, the estimated minimum fleet 
size without swaps, from Equation (3.2), is approximately mmin = 180. For a medium-sized city with a 
larger customer arrival rate λ = 1,000, the minimum required fleet size is approximately mmin = 804. As 
such, for each of the two demand levels λ ∈ {200,1000}, we choose a series of fleet sizes (i.e., m) that 
are slightly larger than mmin. For each pair of m and λ, a total of 15 runs (with different random seeds) 
are conducted, each for a duration of 100 time units. For comparison, the proposed model is solved 

by the proposed algorithm for each pair of parameters m and the actual served demand rate �̂�. At 
both efficient and inefficient equilibria (if both exist), the theoretical predictions of ni,na, µ, 1 − e−µ, τ 
and E[Z] are computed. 

The results are summarized in Table 1. When the swap strategy is applied, inefficient equilibrium may 
still arise for very small fleets, but it occurs only very rarely. In the total 150 simulation runs (i.e., 10 
cases, each 15 runs), the inefficient equilibrium is only observed in 4 runs for λ = 200, m = 185, and 
only once for λ = 200, m = 190. This finding is consistent with the model prediction: the swap strategy 
is intended to shorten the deadheading time, which is most pronounced under the inefficient 
equilibrium, and hence it alters the two equilibria differently and helps reduce the occurrence of the 
WGC. Because we only have sufficient observations for the efficient equilibrium, we compare the 
simulated µ, 1 − e−µ, τ and E[Z] with their model predictions at the efficient equilibrium. Overall, Table 
1 shows that our predicted values match quite well with the simulated values. This demonstrates that 
the proposed model is accurate in predicting the system performance under the swap strategy. 

To draw further insights, we pick the case with λ = 1,000 and m = 820 and further analyze how the 
key performance metrics vary across different subsets of customers. The sample averages of all 
observed performance metrics µ, 1 − e−µ, τ and E[Z] are computed for each subset of customers 
(according to ni ∈ [20,100]) and then plotted as the scattered points in Figure 68. The four continuous 
curves represent the corresponding model predictions from Equations (3.3)–(3.13). Again, the model 
predictions and simulation measurements match fairly well, confirming the accuracy of the model. 

Figure 68 also helps us further understand qualitatively why the swap strategy helps change the 
system equilibrium toward reducing/mitigating the WGC phenomenon. As shown, the values of µ, 1 − 
e−µ, τ and E[Z] all decrease monotonically with the number of idle vehicles ni. This is expected because 
a smaller ni implies that every customer is farther away from its nearest idle vehicle, and in this 
situation, per Figure 56(b): (i) a new customer B expects a longer initial pickup distance to vehicle b1, 
and (ii) the waiting customers A and C may currently have longer pickup distances to their assigned 
vehicles as well (since they also likely have started from longer initial pickup distances). As such, an 
initial swap between this new customer B to either of the other waiting customers A and C is more 
likely to be feasible. Similarly, there is correspondingly a higher chance for each waiting customer to 
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encounter feasible swaps, and for some of them to be successfully conducted. Hence, a swap is more 
likely to occur and be effective when ni is smaller. This is aligned with our objective of rescuing 
vehicles trapped in long deadheading trips, and in so doing moving the system away from the 
inefficient equilibrium. 

 

(a) 𝜇 and 1 − 𝑒−𝜇 

 

(b) 𝜏 and E[𝑍] 

Figure 68. Graph. Values of the key metrices against number of idle vehicles when 𝝀 = 1,000 and m 
= 820. 

One may be curious whether vehicle swaps may occur frequently (or rarely) in practice. While 
multiple conditions need to be satisfied to trigger a feasible swap, there is a very large number of 
combinations of an assigned vehicle (e.g., vehicle a1) and an idle vehicle (e.g., vehicle a2) for each 
newly arriving customer (e.g., customer B). Table 1 presents the value of the probability for a new 
customer to have an initial swap (i.e., 1 − e−µ) at the efficient equilibrium for a number of test cases, 
both predicted and simulated, which falls within the range of 0.01 to 0.1. Additionally, Figure 68(a) 
illustrates the value of this probability for a medium-sized case (λ = 1,000 and m = 820), which ranges 
from approximately 0.05 to 0.5. These results suggest that the occurrence of swaps in practical 
applications falls within an acceptable range (i.e., not too frequent to the extent to annoy or confuse 
the involved parties and also not too rare to the extent to be practically ineffective). 
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Table 1. Comparison of Key Metrics Under System Equilibrium: Simulation vs. Prediction 

𝜆 m 

Efficient equilibrium Inefficient equilibrium 

�̂� 
𝑛𝑖  𝑛𝑎  𝜇 1 − 𝑒−𝜇  𝜏 E[Z] 

�̂� 
𝑛𝑖  𝑛𝑎  

Simulated Predicted Simulated Predicted Simulated Predicted Simulated Predicted Simulated Predicted Simulated Predicted Simulated Predicted Simulated Predicted 

200 

185 198.73 29.73 32.88 22.79 19.63 0.1020 0.0767 0.0952 0.0738 0.1079 0.0988 0.1151 0.1129 209.80 12.25 1.50 32.88 51.01 

190 200.55 35.35 37.70 20.95 18.60 0.0854 0.0637 0.0809 0.0617 0.0999 0.0928 0.1054 0.1060 215.52 13.27 1.10 33.05 55.20 

195 200.14 42.06 44.40 19.51 17.17 0.0746 0.0498 0.0706 0.0486 0.0963 0.0858 0.1009 0.0982 – – < 1 – 60.57 

200 199.98 48.41 50.58 18.27 16.10 0.0614 0.0409 0.0595 0.0401 0.0905 0.0805 0.0940 0.0924 – – < 1 – 65.68 

205 198.95 55.08 57.31 17.28 15.06 0.0504 0.0336 0.0490 0.0330 0.0847 0.0757 0.0872 0.0872 – – <1 – 71.37 

1000 

810 1000.8 76.00 82.24 66.80 60.56 0.1090 0.0880 0.1017 0.0842 0.0638 0.0605 0.0683 0.0738 – – 7.70 – 135.10 

820 1002.0 89.60 95.50 62.40 56.50 0.0971 0.0704 0.0911 0.0680 0.0613 0.0564 0.0651 0.0689 – – 5.50 – 146.50 

830 1000.8 104.40 110.16 58.40 52.64 0.0811 0.0564 0.0771 0.0548 0.0581 0.0526 0.0611 0.0645 – – 3.90 – 158.90 

840 990.60 125.40 132.00 54.20 47.60 0.0689 0.0419 0.0660 0.0410 0.0552 0.0480 0.0576 0.0594 – – 2.50 – 177.10 

850 1004.7 126.00 131.93 54.20 48.27 0.0676 0.0425 0.0649 0.0416 0.0544 0.0480 0.0567 0.0594 – – 2.60 – 177.60 
 

 

Table 2. Comparison of Key Metrics Under Efficient Equilibrium: Simpler Swap vs. Pareto Swap 

𝜆 m 𝑛𝑖  𝜇 1 − 𝑒−𝜇  𝜏 E[Z] 

No swap Simpler swap Pareto swap No swap Simpler swap Pareto swap No swap Simpler swap Pareto swap No swap Simpler swap Pareto swap No swap Simpler swap Pareto swap 

200 

185 28.65 31.84 31.53 0 0.2610 0.0819 0 0.2297 0.0786 0.1151 0.0993 0.1007 0.1154 0.1154 0.1152 

190 36.09 38.19 38.24 0 0.2090 0.0622 0 0.1886 0.0603 0.1029 0.0923 0.0921 0.1055 0.1055 0.1053 

195 42.71 44.24 44.54 0 0.1740 0.0496 0 0.1597 0.0484 0.0948 0.0873 0.0857 0.0982 0.0982 0.0980 

200 48.93 50.12 50.56 0 0.1480 0.0409 0 0.1376 0.0401 0.0887 0.0823 0.0805 0.0925 0.0925 0.0924 

205 54.90 55.87 56.41 0 0.1290 0.0346 0 0.1210 0.0340 0.8381 0.0793 0.0763 0.0879 0.0879 0.0878 
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Furthermore, in Figure 68(a), the vertical difference between the curves of µ and 1 − e−µ, which 
indicates the expected number of feasible swaps encountered per waiting customer that are not 
successfully conducted, decreases monotonically with ni as well, and it gradually diminishes to 0. This 
means when ni is large enough, a feasible swap will more likely be formed between a new customer 
with only one waiting customer, without any other competitors. Yet, when ni is smaller, each new 
customer would see more competitors/candidates upon arrival, adding redundancy to the system. 
That is, even if some assigned vehicles could not perform swaps due to any unexpected disfunctions 
(e.g., driver refusal or communication disruption), the system would still have a good chance of 
conducting a successful swap to rescue a deadheading vehicle. 

Similarly, note that in Figure 68(b), the vertical difference between the curves of τ and E[Z] represents 
the expected reduction of waiting time per customer due to intermediate vehicle swaps. This 
quantity also decreases monotonically with ni. This is reasonable because the reduction of waiting 
time is positively correlated with the expected number of successful swaps per customer 1 − e−µ 

(which shows a similar trend). Note, too, that the expected reduction (both observed or predicted) is 
always greater than 0 across all ni values. This implies that the swap strategy is able to effectively 
reduce the waiting time even when there are a large number of idle vehicles in the system. 

In summary, the above results not only demonstrate reasonable accuracy of the proposed analytic 
model in predicting the steady-state performance of a shared mobility system with the proposed 
swap strategy, but also show that the strategy holds the promise to effectively help the system jump 
out of an inefficient equilibrium. The extent of the effectiveness is studied next by comparing system 
performance metrics with or without swaps. 

Effectiveness of the Pareto Swap Strategy 

To begin with, we conduct a comparison of system performance under three strategies: (i) no swap; 
(ii) the swap strategy from Ouyang and Yang (2023) (depicted in Figure 53[b], referred to as the 
simpler strategy); and (iii) the Pareto swap strategy proposed in this chapter (illustrated in Figure 
53[a], referred to as the Pareto strategy). Table 2 provides an overview of several key performance 
metrics under efficient equilibrium when λ = 200. Both swap strategies effectively reduce the 
customer waiting time τ and slightly increase the number of idle vehicles ni in the system, which is 
consistent with our expectations. Interestingly, the values of ni and τ from both strategies are quite 
similar, while the values of µ and 1−e−µ from the Pareto strategy are much smaller than those from 
the simpler strategy. This indicates that the Pareto strategy employs fewer swaps than the simpler 
strategy, while achieving similar benefits in terms of reducing customer waiting time. One possible 
reason for this observation is that the Pareto strategy is able to reduce the initial pickup distance (i.e., 
Z) upon the new customer’s arrival, which would not be counted as a “swap” from the perspective of 
that new customer, but effectively reduces the remaining pickup trip distance in a similar way. 

Next, we delve deeper into the Pareto strategy and compare the system performance under two 
practical conditions: one-type customer and multiple-type customer systems. 
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One Type of Customers 

First, we compare the relationships between the expected waiting time per customer vs. the fleet 
size, with or without swaps, under a variety of customer arrival rates. The results are plotted in Figure 
69. Only equilibrium points satisfying ni > 1 are plotted. 

Figure 69 shows that the swap strategy, for all demand levels, moves the curve toward the bottom 
and slightly toward the left. This indicates reductions of fleet size and/or waiting time, and the 
benefits are especially stronger when the fleet size is relatively smaller. To measure the former 
benefit, we note the minimum required fleet size mmin is reduced to mswap

min. The expected number of 
in-service vehicles in the steady state ns = αλ should be independent of the use of the swap strategy, 
Hence, the swap strategy must have only reduced the number of vehicles that are not yet with a 
passenger onboard, which we call “empty” vehicles—the reduction of empty vehicles will be used as 
a more direct metric to measure the change in fleet size requirements. To measure the latter benefit, 
we measure the change of waiting time with a specific fleet size m = mmin for the corresponding 
demand; see Figure 69. 

As shown in Figure 69, when λ ∈ {200,400,1000,2000}, the swap strategy notably reduces the 
required empty vehicle fleet size from 47 to 42 (10.64% reduction), from 74 to 66 (10.81% reduction), 
from 137 to 120 (12.41% reduction), and from 219 to 191 (12.79% reduction), respectively. 
Meanwhile, the expected waiting times at fleet sizes m = mmin are reduced from 0.1452 to 0.1133 
(21.99% reduction), from 0.1190 to 0.0888 (25.32% reduction), from 0.0923 to 0.0637 (31.00% 
reduction), and from 0.0732 to 0.0489 (33.26% reduction), respectively. When λ increases, the 
benefits from the swap strategy also increase, possibly because under higher demand and a larger 
fleet size, there are generally more opportunities to match customers with vehicles and more 
opportunities for them to form feasible swaps. 

 

(a) λ = 200 
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(b) λ = 400 

 

(c) λ = 1,000 

 

(d) λ = 2,000 

Figure 69. Graph. Fleet size against waiting times for one-type customer system. 

Multiple Types of Customers 

Now, we consider a slightly different situation where the mobility system is serving multiple types of 
customers (e.g., Uber vs. Lyft customers or passenger vs. freight customers) through a pooled fleet 
that is enabled by either a service integrator and/or use of modular chassis. We aim to see how the 
swap strategy may impact the system, and how it can be synergistic with the pooling of vehicle fleet. 
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To this end, we assume there are Q types of customer trips in the same service region, each of which, 
indexed by q = 1,··· ,Q, is generated from an independent Poisson process with rate λq > 0. 

Conventionally, the demand needs to be served by multiple distinct vehicle fleets of sizes {mq,∀q}, 
which are probably managed by different operators. To stay focused, we further assume that in a 
competitive market, the operator(s) may feel compelled to provide a similar level of service (e.g., 
waiting time) to all customers. As such, without vehicle swaps, the required fleet sizes, mq, and the 
number of idle vehicles at equilibrium, niq, must satisfy the following variant of Equation (3.2): 

 

Figure 70. Equation. Variant of Equation (3.2). 

Note, too, that the expected waiting time of type-q customers, 
𝜅

√𝑛𝑖𝑞+1
, ∀𝑞 ∈ {1, ⋯ , 𝑄}, is solely 

dependent on niq. Hence, equal waiting time across all customers implies that niq should be equal for 
all q ∈ {1,··· ,Q}, and their summation should be the total idle vehicle number for the entire system ni; 
i.e., niq = ni/Q,∀q ∈ {1,··· ,Q}. Hence, 

 

Figure 71. Equation. Equation (3.15). 

When the fleets are pooled together, all customers may be served by any vehicle. The system 

becomes one with a single type of customer, with a total demand rate Pq∈{1,···,Q} λq. The queuing model  

directly yields the following: 

 

Figure 72. Equation. Equation (3.16). 

It can be immediately seen from Equation (3.15) and Equation (3.16) that, in order to achieve the 
same waiting time (i.e., the last terms), the pooled fleet requires a smaller total number of idle 
vehicles in the system. 

Next, we examine the impacts of the swap strategy on the “distinct fleet” service. We take a system 
with Q = 2, λ1 = 1,000, and λ2 = 2,000 as an example. The relationships between the expected waiting 
time per customer vs. the total fleet size in the system, with or without vehicle swaps, are plotted as 
the dash-dotted and dotted curves in Figure 73, respectively. As expected, the swap strategy moves 



53 

the curve toward the left and toward the bottom and reduces the required empty vehicle number 
from 361 to 320 (11.36% reduction). Meanwhile, the expected customer waiting time at fleet size m = 
mmin of the distinct fleet service is also reduced from 0.0786 to 0.0545 (30.61% reduction). 

 

Figure 73. Graph. Fleet sizes against waiting times for two-type customer system. 

Then, we further examine the effect of the swap strategy when it is used together with the “pooled 
fleet” service. For the same example, the total customer demand rate is λ = λ1 + λ2 = 3,000. The 
relationship between the expected waiting time per customer vs. the total fleet size, with or without 
swaps, are also plotted as the solid and dashed curves in Figure 73, respectively. It is interesting to 
observe how, for this case, the pooled-fleet service alone can provide notable benefits, even 
compared to the distinct-fleet service with swaps. Finally, the system performance can be further 
improved by combining the swap strategy with the pooled-fleet service, as shown by the solid curve 
in Figure 73. As compared to the distinct-fleet service without swaps, the minimum required empty 
vehicle fleet size (besides 2,000 in-service vehicles) decreases from 361 to 247, representing a 31.58% 
reduction. Meanwhile, when m = mmin of the distinct-fleet service, the expected customer waiting 
time moves from 0.0786 to 0.0325, which is a 58.59% drop. These superior performance demonstrate 
the synergistic multiplier effect provided by combining both the pooled-fleet service and the vehicle 
swap strategy. 

CONCLUSION 

This chapter proposes a generalized Pareto-improving dynamic swap strategy for shared mobility 
systems so as to reduce the expected waiting/deadheading time and enhance the overall operational 
efficiency. The proposed strategy is expected to mitigate the so-called WGC phenomenon and reduce 
the total required vehicle resources. A set of approximate analytic formulas are derived to predict the 
system performance in the steady state, and they can be solved numerically as a system of nonlinear 
equations. The accuracy of the proposed models is verified by comparing the model outputs with 
agent-based simulations through a series of experiments. Then, the impacts of the swap strategy on 
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distinct and pooled fleets are studied by comparing the performance of mobility systems with and 
without swaps. The results show that the proposed swap strategy can provide benefits from reducing 
both customer waiting time and fleet size requirements for serving one or multiple type(s) of 
customers. 

The current model incorporates several simplifying assumptions, which could be relaxed or adapted 
in future explorations. First, the queuing model presented assumes instant vehicle assignments (in 
order to derive closed-form formulas), while many real-world mobility services use demand pooling 
and batch vehicle assignments. Given that the idea of vehicle swaps is applicable regardless of the 
method used for customer-vehicle matching decisions, we are particularly interested in deriving 
analytical formulas to estimate batch matching distances. By doing so, we can further explore the 
benefits of the swap strategy in the context of batch matching and compare them with those under 
instant matching, which would be very insightful. Second, while deriving the approximated 
conditional probabilities (e.g., p(x)), we make the assumption of independence among some distance 
variables and geometric conditions. For instance, condition (c) in the appendix is currently considered 
relatively independent of conditions (a) and (b). Relaxing such independence assumptions could 
result in a more accurate representation of the system dynamics. Third, we assume that a swap is 
selected randomly among all feasible candidates. Alternative and more advanced criteria for selecting 
an “optimal” swap candidate can be explored (e.g., one that maximizes the reduced deadheading 
distance from the swap). Further research in this direction can be done either analytically or 
numerically to provide additional insights into the effectiveness of the proposed vehicle swap 
strategy. Lastly, several of the derived approximate formulas (e.g., those in the appendix) assume 
some sort of Poisson distribution; this assumption ignores the impact of the service region boundary 
and potential spatial heterogeneity across vehicles and customers. Such a heterogeneity may be 
addressed approximately by assuming that the Poisson expectation of each vehicle or customer 
follows a gamma expectation, which will lead to a negative binomial distribution instead of a Poisson 
distribution. Examples of such treatments can be found in Ouyang et al. (2021). 

More importantly, the proposed swap strategy may also entail certain costs and challenges in real-
world settings, and these practical issues should be addressed in future research. For example, the 
proposed model does not take into account any potential transaction cost for a vehicle swap, such as 
the time needed for a driver to accept/reject a new pickup task, the potential time required for a 
modular chassis to be assembled with a customized cabin, or the potential confusion and anxiety that 
a swap may bring to the involved participants. In reality, operators may also want to control the 
number of swaps per customer or vehicle—e.g., by ensuring that the potential benefits from a swap 
exceed certain thresholds (e.g., transaction costs). An extension of the model, therefore, is to 
introduce stronger feasibility conditions that must be satisfied in order to trigger a swap. In addition, 
the model currently does not discriminate customers with priorities. In the real world, however, 
customers may have different service quality expectations (e.g., some customers may desire faster 
service in accordance with a specific pricing scheme or passenger demand may have a higher time 
value than freight demand). Therefore, the model can be extended by considering discriminative 
customer service strategies. Finally, because the system performance is determined by several key 
input parameters such as customer arrival rate and available fleet size, an optimization model can be 
further developed to help the operators to better optimize their service offerings.  
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PROJECT OUTPUTS, OUTCOMES, AND IMPACTS 

OUTPUTS 

In this project, we propose a new dynamic vehicle swap strategy that can be used to enhance system 
efficiency by reducing the expected waiting/deadheading time. We also present a set of closed-form 
formulas, without curve-fitting, that can provide accurate average distance estimates for one-
dimensional random bipartite matching problems. Results are concluded in two papers listed below: 

• Journal article: Shiyu Shen & Yanfeng Ouyang. (2023). Dynamic and Pareto-improving 
swapping of vehicles to enhance integrated and modular mobility services. Transportation 
Research Part C: Emerging Technologies, https://doi.org/10.1016/j.trc.2023.104366  

• Preprint: Yuhui Zhai, Shiyu Shen & Yanfeng Ouyang. Average Distance of Random Bipartite 
Matching in Discrete Networks, Arxiv, https://arxiv.org/abs/2409.18292.  

OUTCOMES 

In this project, we propose an analytical model with closed-form formulas (without statistical curve 
fitting) that estimate the expectation of the optimal matching distance for static RBMP, where the 
bipartite vertices are distributed randomly over a discrete network. These formulas can be 
incorporated into queuing and optimization models to identify the best operational strategies in on-
demand mobility systems with closed- or open-loop resource arrivals. It helps determine the optimal 
decision timing for whether newly arriving customers should be matched instantly or pooled into a 
batch for matching and for ST-RBMPs with closed-loop resources, where arriving customers shall be 
matched instantly. The objective is to propose a Pareto-improving strategy that allows matched 
vertices to be swapped among candidates with improved matching distances as the system evolves. 
This strategy could enhance system efficiency by reducing the overall expected matching distance 
and mitigating the so-called Wild Goose Chase phenomenon. Approximate analytic formulas can be 
derived from a series of differential equations and spatial probability models to estimate the 
expected system performance in the steady state. 

IMPACTS 

The results from this project aimed to address the challenges faced by on-demand mobility operators 
in understanding and addressing spatiotemporal random bipartite matching problems (ST-RBMPs). At 
the planning level, we developed analytical models to estimate the expected system performance in 
a static RBMP. Better understanding of system performance will guide the current operators to 
improve the service quality. At the operational level, we designed solution algorithms to improve the 
overall service efficiency in ST-RBMPs with different types of supply arrivals. Although our main focus 
was on the application of on-demand mobility services, these models can also be applied to other 
contexts such as resource allocation, target detection, etc. Results found in this project may provide a 
clearance guidance toward the rapid evolution of autonomous vehicles that is anticipated to reshape 
the shared mobility market very soon.  
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APPENDIX A: LIST OF NOTATIONS 

Table 3. Notations 

Notation Description 

m,n Cardinalities of the two point sets in an one-dimensional RBMP 

U, V Two sets of points for each one-dimensional RBMP realization 

I Set containing all points in U and V 

E Set of edges connecting u ∈ U and v ∈ V 

yuv 1 if u ∈ U is matched to v ∈ V , 0 otherwise 

Xm,n Average optimal matching distance per point in an one-dimensional RBMP 

xi x-coordinate of a point i ∈ I 

zi Supply value of a point i ∈ I 

li Distance (step size) from a point i ∈ I to its next point 

l Mean step size between any two consecutive points in I 

S(x;I′) Net supply curve for any coordinate x and subset of points I′ ⊆ I 

A(x;I′) Total absolute area between curve S(x;I′) and x-axis from 0 to x 

Yn Total absolute area between any balanced supply curve and x-axis from 0 to 1 

B(n) Expected total absolute area between the path of a random walk with 2n unit-length 

steps and x-axis 

V ′ An arbitrary set of unmatched/removed points in V 

V ∗ Optimal set of removed points 

Vˆ Set of removed points from the proposed point removal process 

 k-th removed point along the x-axis in V ′, V ∗, Vˆ 

mk Number of demand points in the k-th segment of the post-removal curve S(x;I\V ∗) 

mˆ k Number of demand points in the k-th segment of the post-removal curve S(x;I \Vˆ) 

mˆ k,0   Number of demand points with zero net supplies in the k-th segment of the 

postremoval curve S(x;I \ Vˆ) 

Zˆk,a Total absolute area enclosed by S(x;I \Vˆ) within (xvˆk,1], which contains exactly a 

demand points 

Zm,n Total absolute area enclosed by S(x;I \ V ∗) from 0 to 1 

L Length of a line (edge) 

XE Average optimal matching distance per point on an arbitrary-length line 

µ,λ Densities of the two point sets on an arbitrary-length line 

G = (V,E) Graph with node set V and edge set E 

D Degree of node in V 

Ue,Ve Realized point sets on an edge e ∈ E 

me,ne Cardinality of point sets Ue and Ve 

 



62 

 

 

Notation Description 

XG Average optimal matching distance per point in a graph 

XGl ,XGg Average optimal local and global matching distances in a graph 

α Probability for global matching 

ϕ(·),Φ(·) Probability density function and cumulative distribution function of standard 

normal distribution 

Ue+,Ve+ Remaining point sets on an edge e ∈ E after local matching process 

Nk k-th layer of edges for a point u ∈ Ue
+ in breadth-first search 

e∗ Edge containing the matched point v for a point u ∈ Ue
+ 

o0 Nearer end of  

ok Nearer end of e∗ to o0 

d1 Distance from u ∈ Ue
+ to o0 

d2 Distance from o0 to ok 

d3 Distance from ok to the matched point  
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APPENDIX B: DERIVATIONS IN CHAPTER 3 

DERIVATION OF P(X) 

Here we derive the probability p(x) for a swap between a new customer and a waiting customer to be 
feasible, conditional on the distance between the waiting customer and its assigned vehicle X to be x. 
Recall that a swap is feasible when conditions (a)-(c) are all satisfied, as illustrated by Figure 56a. 
Explicitly deriving a closed-form formula for p(x) is nontrivial, because the three conditions (a)-(c) may 
be correlated. For modeling convenience, we make the following assumptions: (i) the distance 
variables X, cX̂ ,Y, Ŷ are independent of each other, (ii) condition (c) is (relatively) independent of 
conditions (a) and (b) because it involves only one random variable Xˆ and a given value x, and (iii) 
conditions (a) and (b) are correlated, because the same random variable Yˆ needs to be 
simultaneously less than or equal to both variables Y and X = x. Under the Manhattan distance metric, 
condition (c) is satisfied if vehicle a2 is located within the upper blue diamond area in Figure 56a. 
Because its location is uniformly distributed, condition (c) occurs with a probability of: 

 

Figure 74. Equation. Probability of condition (c) occurs. 

Similarly, condition (a) is satisfied when vehicle b1 is located outside of the orange diamond area, and 
condition (b) is satisfied if customer B arrives within the lower blue diamond area (see Figure 56a). 
We assume the distributions of Y and Yˆ are characterized by their cumulative distribution functions 
FY (y), FYˆ (y), and probability density functions fY (y), fYˆ (y), respectively. They satisfy the following: 

 

Figure 75. Equation. Cumulative distribution functions and probability density functions.   

Then, we can derive the probability for conditions (a) and (b) to be satisfied simultaneously, 
conditional on the relative values of X and Y : 

 

Figure 76. Equation. Probability of satisfying condition (a) and (b). 
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Putting the above together, we come up with: 

 

Figure 77. Equation. Probability p(x). 

DERIVATION FOR ω 

In this appendix, we borrow the ideas in Ouyang and Yang (2023b) to present an analytical formula 
for the conditional probability of a feasible swap to be successful under competition, i.e. ω, when the 
new customer sees at least one feasible swap candidate. 

First, a bipartite graph can be constructed by drawing connections between new customers and 
waiting customers during a sufficiently long time period in the steady state, as shown in Figure 74. 
Each time a new customer arrives, we mark it as a vertex (e.g., an orange hollow circle) on the upper 
side of the graph. This new customer immediately gets assigned a vehicle and starts to wait for 
pickup, so we add another corresponding vertex (e.g., a blue solid circle) on the lower side of the 
bipartite graph. Each waiting customer is expected to wait for a certain amount of time until pickup. 
During this waiting period, they may become a feasible swap candidate for some other customers 
who arrive later. The black dashed arrows in Figure 74 show the life-cycle of each customer, from 
arrival to waiting to pickup. Upon the arrival of each new customer, we check whether a swap is 
feasible between this new customer and all the currently waiting customers (i.e., those not yet picked 
up); if yes, we then add a solid-line edge to the graph connecting the corresponding vertices. For 
instance, in Figure 74, customers A, B and C arrive consecutively into the system. Upon customer C’s 
arrival, customers A and B are still waiting for pickup. If A and B (as well as their vehicles) both satisfy 
the conditions to be feasible swap candidates for C, then we add edges |AC| and |BC| into the graph 
correspondingly. As such, the degree of a vertex on the upper side represents the number of all 
feasible swaps instantly seen by the corresponding new customer, denoted as a random variable K. 
Similarly, the degree of a vertex on the lower side is the number of feasible swaps the corresponding 
waiting customer may encounter during its entire waiting period, denoted by a random variable F. By 
definition, we have µ = E[F]. 

 

Figure 78. Graph. Bipartite graph between the new and waiting customers. 
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Because each edge contributes equally (i.e., exactly one degree) to a pair of vertices on both sides, 
the total numbers of degrees must be equal on both sides of the bipartite graph. Additionally, in the 
steady state, the new and waiting customer appear with the same arrival rate, thus the cumulative 
numbers of new customers and waiting customers (i.e., the numbers of vertices on both sides) in this 
sufficiently long time period must be the same, which equals λ multiplied by the length of the period. 
As such, the average degree per vertex must also be equal. Hence we shall have µ = E[K] = E[F]. For 
modeling convenience, it is assumed that every new customer is probabilistically identical, and K 
approximately follows a Poisson distribution. Then, given the new customer sees at least one feasible 
swap candidates (i.e., K ̸= 0), and each swap candidate has an equal probability of 1/K for being 
successful, the conditional probability of a feasible swap to be successfully conducted can be 
analytically expressed as follows: 

 

Figure 79. Equation. Equation of ω 

This is the expression for ω. 

A similar bipartite graph can be constructed to estimate the expected total number of successful 
swaps. The graph contains the same vertices as those in Figure 74, but only the edges corresponding 
to successfully swaps. As such, the degree of a new customer vertex is either 1 or 0, indicating 
whether or not an initial swap is experience. The degree of a waiting customer vertex now is the 
number of successful swaps it may encounter during its entire wait for pickup. Clearly, the total 
degrees on both sides are equal, and so are the number of vertices. Hence, the average degrees per 
vertex are also equal on both sides; i.e., the expected number of successful swaps per waiting 
customer must equal the probability for a new customer to have an initial swap, which is 1 − e−µ. Note 
that, interestingly, this value will never exceed 1. 

DERIVATIONS OF FZ(Z) AND FX(X) 

First, we show how to derive the cumulative distribution function of the initial pickup distance FZ(z). 
As illustrated in Figure 56a, conditional on whether an initial swap is conducted, the initial pickup 
distance equals to either Ŷ or Y. As such, the probability for the initial pickup distance to be greater 
than a certain value z, 1 − FZ(z), should equal Pr{Y > z ∩ no initial swap} + Pr{Y >  �̂� ∩ initial swap}. 
Note too that Pr{Y > z ∩ no initial swap} = 1 − Pr{Y ≤ z} − Pr{Y > z ∩ initial swap}. Hence, 

 

Figure 80. Equation. Cumulative distribution function of the initial pickup distance. 

where Pr{Y ≤ z} is simply given by FY (z) = 1 − (1 − 2z2)ni. 
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Then, we need to further derive the probabilities of Pr{Y > �̂� ∩initial swap} and Pr{Y > z ∩ initial 
swap}. First of all, for an initial swap to be conducted, a feasible swap candidate should have already 
been chosen from the perspective of a new customer. As such, conditions (a)-(c) discussed in Section 
3.3.2 (i.e., Ŷ ≤ Y, Ŷ ≤ X and X̂ ≤ X), conditional on X = x, should all be satisfied, while value of x could 

probabilistically take any value within its domain (0,√1/2]. Hence the two probabilities can be 

analytically derived, by integrating on all possible values of x, as follows: 

 

Figure 81. Equation. Probability of  �̂� > 𝒛 and initial swap. 

and 

 

Figure 82. Equation. Probability of 𝒀 > 𝒛 and initial swap. 

Then, FZ(z) can be obtained by substituting Equations (18) and (19) into Equation (17); i.e., 
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Figure 83. Equation. Equation of 𝑭𝒁(𝒛). 

Note that the above derivation depends on the probability distribution of the remaining pickup 
distance, fX(x), observed at an arbitrary time. We next show the detailed derivations for fX(x). Because 
a swap could happen during a deadheading trip, the remaining distance x may experience abrupt 
jumps to a smaller value, and hence is not equally likely to be observed. 

When P(x) is the conditional probability for a waiting customer to ever be x distance away from its 
assigned vehicle, then by definition of probability, fX(x) is proportional to P(x), as expressed in the 
following: 

 

Figure 84. Equation. Equation of 𝒇𝑿(𝒙). 

Then, we further derive P(x) from the perspective of a waiting customer. When the initial pickup 
distance Z is smaller than the value of x, which occurs with a probability of Pr{Z < x} = FZ(x), then this 
customer will never see its vehicle x distance away. Otherwise, when Z ≥ x, this customer will never 
see its vehicle x distance away only when the following conditions are satisfied: the waiting customer 
was x ̂∈ (x,z] distance away from its assigned vehicle, which occurs with probability P(x)̂; a swap is 
successful when the assigned vehicle is exactly x ̂distance away, which occurs with a probability of 
p(x)̂ω; the remaining pickup distance after the swap jumps to some value less than x, which occurs 

with a probability of 
𝑥2

�̂�2. These conditions for Z ≥ x are illustrated in Figure 75, where the customer at 

the origin was initially assigned to a vehicle at distance z. When the distance reduces to x,̂ a swap 
occurs and a vehicle at a distance less than x takes over. 

 

Figure 85. Graph. Illustration of distance x is skipped along the pickup trip. 
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Putting the probabilities for the conditions together, we know that P(x) satisfies the following 
equation: 

 

Figure 86. Equation. Equation of P(x). 
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